
Plan	  of	  the	  lectures	  

Monday 
description, technical and practical advices to use RAMSES. 
tests and problems 
 
 
 
Tuesday 
Numerical schemes, hydro and mhd solvers, stability 
 
 
 
Wednesday 
More about numerical schemes – The issue of div B 
AMR issues and gravity  
 
 



History	  of	  RAMSES	  

RAMSES	  has	  been	  wri9en	  by	  Romain	  Teyssier	  (Teyssier	  2002)	  
	  
Originally	  designed	  for	  cosmology	  simulaCons	  
Amongst	  the	  largest	  cosmology	  simulaCons	  have	  been	  done	  with	  RAMSES	  
	  
	  
The	  first	  version	  handled	  dark	  ma9er	  parCcles	  (interacCon	  only	  through	  gravity)	  
and	  hydrodynamics	  
	  
	  
The	  parCcles	  are	  projected	  onto	  the	  mesh	  and	  the	  gravitaConal	  potenCal	  can	  be	  
calculated	  using	  grid	  techniques	  (unlike	  what	  is	  generally	  done	  in	  SPH	  for	  
example)	  
	  
	  
The	  adapCve	  mesh	  refinement	  (AMR)	  scheme	  allows	  to	  calculate	  accurately	  the	  
gravitaConal	  potenCal	  in	  regions	  where	  there	  are	  important	  small	  scale	  
variaCons	  
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Quasi-Lagrangian mesh evolution:

roughly constant number of particles

per cell

Trigger new refinement when n > 10-

40 particles. The fractal dimension is

close to 1.5 at large scale (filaments)

and is less than 1 at small scales

(clumps).

Particle-Mesh on AMR grids:

Cloud size equal to the local mesh

spacing

Poisson solver on the AMR grid

Multigrid or Conjugate Gradient

Interpolation to get Dirichlet boundary

conditions (one way interface)

Cosmology with AMR



Further	  developments	  of	  RAMSES:	  magneCc	  field	  

The	  magneCc	  field	  has	  been	  introduced	  in	  the	  ideal	  MHD	  limit	  
	  
Teyssier,	  Fromang,	  Dormy,	  2006	  :	  kineCc	  field	  (study	  dynamo)	  
Fromang,	  Hennebelle	  &	  Teyssier	  2006	  :	  ideal	  MHD	  
	  
	  
Use	  finite	  volume	  methods,	  2nd	  order	  accuracy	  in	  Cme	  and	  space	  
Constraint	  transport	  schemes	  
	  
	  
Non	  ideal	  MHD	  effects	  have	  been	  introduced	  
	  
Masson,	  Teyssier,	  Mulet-‐Marquis,	  Hennebelle	  and	  Chabrier	  2012	  
	  
Explicit	  treatment	  of	  	  the	  non-‐ideal	  mhd	  terms	  



Further	  developments	  of	  RAMSES:	  radiaCve	  transfer	  

Explicit	  treatment	  
	  
Aubert	  &	  Teyssier	  2010	  
	  
Rosdahl	  et	  al.	  2010	  
	  
	  	  

Implicit	  treatment	  
	  
Commerçon	  et	  al.	  2011	  
grey	  transfer	  and	  diffusion	  approximaCon	  
Not	  publically	  available	  yet	  	  



Finite volume methods for 
compressible MHD 

	  
	  
	  

Patrick	  Hennebelle	  
Thanks to  

Romain Teyssier and Sébastien Fromang 
	  



                             Summary of the lecture 
 
1) Introduction 

 -stability 
 -MHD equations, standard and conservative forms 
 -Godunov-type methods and Riemann problems 

         
2) Riemann solver 

 -exact hydrodynamical solver 
 -ROE solver       
 -HLL type solvers 
  

3) High order schemes 
 
4) 1D and 2D Numerical tests:  comparing the solvers 
 
5) MultiD MHD 

 -Specificity of the MultiD MHD equations 
 -the methods 

 
6) 2D Numerical tests: comparing the methods 

 



            Introduction 



Explicit methods and stability 
 
We consider the simple advection equation:  
a some constant. 
 
Let us discretize it: 
 
 
 
 
 
A possible and appealing choice is: 
 
 
 
 
 
(subscript  timestep, underscript position) 
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=>This method turns out to be unstable… 
 
Physically this is because, information is “upwind”. It  should  come only 
from the regions from which the flow is coming. Can be interpreted as a 
negative viscosity otherwise. 
 
Mathematically, this can be shown using von Neumann analysis.  
Let Fourier transform the mesh: 
 
 
 
 
 
 
 
 
 
 
Thus, the modes are amplified at each time step leading to a strong 
instability.   
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Physically, the following discretization should get rid of this problem:  
 
 
 
 
 
 
 
 
 
Let us check this mathematically: 
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Thus, the scheme is stable as long as C<1 which is called the:  
Courant condition.  
 
Physical meaning is clear: information should come from the nearest 
upwind neighbours.  
 
In the case of more complex equations entailing various wave propagation, 
information comes generally from both the left and the right neighbours, 
depending on the wave which is considered.  
 
 
Important messages: 
 
-discretization matters a lot 
 
-information should be upwind 
 
-time step is a crucial issue 
 



           What is MHD ? Why MHD approximation ? 
(Shu 1992, Kulsrud 2005 , ……) 

In many astrophysical systems, the magnetic field is thought to play an 
important, sometimes dominant role (e.g. solar coronna, solar wind, 
interstellar medium, accretion disk, jets…).  

MHD equations are fluid equations and require that the collisional length 
must be small with respect to the size of the system considered. When this is 
not true Bolzmann equation should be used but considerably more difficult.  
In practice, MHD sometimes used even when this condition is not satisfied. 
 
Even so, we should treat 2 fluids, electrons and ions: still very complex 
 
But with  four approximations, we can derive a single fluid set of equations  
leading to   ideal MHD equations: 
   -local fluid neutrality (density of posivite charges = negative charges) 
   -neglect the displacement current in Maxwell equations 
   -neglect the electrons inertia 
   -assume perfect conductor (no magnetic diffusivity, no Hall effect) 
 
Non ideal, single fluid MHD may consider: resistivity, Hall terms, « ambipolar  
diffusion »  



 MHD equations, standard and conservative forms 
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In 1D can also be written as: 

                                              

                                                       A is called the Jacobian 

                                                       Its eigenvalues are the wave 

                                                       speeds. 

In 3D, we have: 
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            Brief description of the MHD waves 
 

The 1D MHD equations have seven eigenvalues or equivalently give rise to 7 
waves. 

2 Alfvén waves: transverse mode (analogous to the vibration of  a string) 

2 slow magneto-acoustic waves (coupling between Lorentz force and thermal 
pressure, B and ρ are anticorrelated) 

2 fast magneto-acoustic waves (coupling between Lorentz force and thermal 
pressure, B and ρ are correlated) 

1 entropy wave (contact discontinuity, does not propagate) 
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λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7

The wave velocities are such that: 

 

       fast - Alfvén - slow - entropy - slow - Alfvén - fast 

Therefore, some eigenvalues may coincide depending on the 
direction and the strength of the magnetic field (whereas hydro 
case is strickly hyperbolic).  

x 
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U1 U2 

Wave fan: 



                           Godunov type methods 
 

Originally developed to solve compressible hydrodynamical equations (Godunov 
1959). Well suited to handdle shocks and discontinuities 

=> This is why they are so commonly used in astrophysics. No need to introduce 
viscosity to stabilize the scheme. Discontinuities resolved in few cells. 

Each computational cell represents a fluid volume with uniform density, velocity, 
energy inside the cell which represents the average values. 
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The total  mass, momentum and energy within the cells are thus 

 

 

 

 

 

 

The cells exchange flux of matter, momentum and energy between each others. 
Philosophy different from finite difference methods, in which the discrete values 
represent the exact values of the quantity at the location, or from Fourier methods. 
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The exact discretized solution of                                 is given by: 

 

                               

 

 

 

Note that: 

-this is at this stage an exact solution, in practice however the fluxes are 
approximately calculated 

-even if the fluxes are not correct, the method, by construction, conserves 
mass, momentum and energy exactly since the amount retrieve from one cell 
is exactly given to its neighbour 

- this expression does not entail derivative but flux differences, this is why, 
discontinuities are well resolved. This is unlike finite difference methods or 
spectral methods.  
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                           The Riemann Problem 
 
The question with the Godunov method is thus to estimate accurately the 
fluxes exchanged between two uniform states U1 and U2. 
 
 
 
 
 
 
This is called the Riemann problem.  
 
Since no characteristic scale is involved in the problem, it is self-similar. That 
is to say the pattern at (x,t) can be deduced from the pattern at (x’,t’), U(x/
t)=U(x’/t’). Thus, the flux exchanged between the 2 states is constant in 
time. 
 
 A central problem for Godunov type methods, is to have accurate 
« Riemann solvers » which resolve the Riemann problem at interface 
between cells and provide the flux. 
 
Solving the Riemann problem for non linear equations  is in general a 
very difficult problem. 

F 

U1 U2 



RIEMANN SOLVER  

1D MHD 



          Exact hydrodynamical Riemann solver 
 

-Hydrodynamical Riemann problem entails 3 non-linear waves, 
rarefaction wave, contact discontinuity and shock 

      

 

 

                               

RarefacCon	  wave	  
shock	  

Contact	  disconCnuity	  



 

-Exact hydrodynamical solver is known  

 

-Need to perform several iterations  

=>Accurate but expensive  

=>Interest in having cheaper solvers 

 

 

 In MHD, no exact solver is known (would be very expensive) 

=> Need to find  approximate solvers 

 

 

                               



                           Shock Jump conditions 
 
Across a discontinuity (that is to say in any point), and in the  frame 
moving with it, jump conditions apply: 
  
In the laboratory frame, the discontinuity is moving at some speed λC. 
The jump relation can then be written as: 
 
 
To see this, let us consider again the equation:                             and a 
control volume [XL,XR]. A corresponding integral form on the volume of 
control is: 
 
 
 
 
 
 
 
Thus, if XL->XR, the integrals on the right hand side vanish and we 
obtain the relation. 
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Solution of the Riemann Problem for linear  
hyperbolic systems 

(Toro 1999) 
Finding the solution of the Riemann problem is possible when the Jacobian A of 
the system is a constant matrix. As will be seen later, this turns out to be 
extremely useful.  
 
Let us consider the simple linear advection equation: 
The solutions are simply given by:  
 
Thus the rate of change of u along the characteristic curve dx/dt=a is zero. a is 
called the characteristic speed.  
In this case the solution of the Riemann problem is very simple: 
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Now let us consider a linear system of m variables and equations. 
 
 
Let us diagonalise A:  
 
 
 
 
 
 
 
Thus, the system is decoupled and the solution fo each Wi  is just Wi (x-λit). 
Coming back to U, we have: 
 
Let us consider again the Riemann problem, U(x,0)=UL for x<0 and UR for 
x>0 
We can write:  
 
 
For a given (x,t), there is an eigenvalue such that λI<x/t< λI+1 : 
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Thus, we have the following picture:  
 
 
 
 
 
 
The solution consists of m waves emanating from the origin.They constitute 
the wave fan.  Each wave carries a jump discontinuity.  
 
We can now estimate the flux exchanged between the cells that will be 
needed to advance the solution.  The value of U at the interface is U(0):  
 
 
 
 
Thus, we can obtain the Godunov flux: 
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upwinding and code 
stability 



An example: 
Let us consider the linearized 1D hydrodynamical equations. 
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   The ROE Riemann solver (MHD solver) 
3 waves linear solver for HD (Roe 1981, Toro 1999). 

7 waves linear solver for MHD (Brio & Wu 1988, Cargo & Gallice 1998, 
Balsara 1998). 

Complex method which requires some calculations. Only the basic ideas 
presented here.  

Solving the Riemann problem exactly is too difficult so one replaces the 
non linear problem by a linear problem that is solved exactly. 

Replace the new Jacobian, A, by a linear one which has adequate 
properties. 

 

It is required to have the following properties: 

Property (A): Hyperbolicity of  A, implying that it has m eigenvalues and  

eigenvectors. 

This preserves the linear wave structure of the original problem. 
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Property (B):  

This is called the consistency. It implies that in the limit where the right and 
left states becomes identical, the flux is exactly recovered. 

 

Property (C):  

This is the most difficult property to satisfy.   

It ensures that an isolated discontinuity which satisfies the jump relation: 

 

will be adequatly described by the solver (projected in a single eigenvector 
giving λc=λi).  

Constructing a Roe matrix is not easy. Simple averaging like 0.5(A(UR)
+A(UL)) does not verify  property (C). 

This can be achieved (Roe 1981) by introducing an intermediate vector Q. 
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By doing this, it is found that U and F express as algebraic relations (product 
QiQj or ratio Qi/Qj ) involving the components of Q.   But we have for 
example: 

 

Thus the jump relations can be expressed by the jump relation of Q: 

 

Thus, 

And the flux is given by the formula obtained previously: 

 

To summarize, the whole algorithm is:  

-compute the Roe average, involved quantities like:   

-compute the eigenvalues and eigenvectors  

-compute the wave strength (α-β) 

-compute the flux 
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Generally speaking, the Roe solver works well and gives accurate 
results. It is widely used and serves as a reference.   

 
In some rare occasions (but not so rare….), the Roe solver is 
encountering severe difficulties and crashes.This is due to the 
linearisation which is a poor approximation for highly non linear 
discontinuities encountered in stiff problems.  

 
The manifestation of this can be: 
-intermediate states with negative energy or density 
-rarefaction shocks leading to entropy violation 
 
An entropy fix or more generally a switch is needed to cure these 
events… Various possibilities have been proposed (see e.g. Toro 
1999).  

For example, one can switch to HLL using the largest and smallest 
wave speed of Roe. This replaces the 6 intermediate Roe states by a 
single star state. 



   The H(arten)L(ax) (van)L(eer)  Riemann solver 
     (Harten et al. 1983, Toro 1999) 

2 waves solver (hydro and mhd):  

one retains only the 2 fastest waves (e.g. the 2 fast magneto-accoustic 
waves) and then assume that  between the 2 waves, there is a uniform 
state U*.  

Conservation laws are then used to determine U* and the flux F *.     
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t 
λL 

λR 
U* 



x UL, FL  UR, FR  
 

L -L λL*t λR*t 

U* 

First step (HLL) 
Let us consider a volume of control V, i.e. an area of surface S in YZ and 
delimited by -L and L in X. 
 
At time t=0, the total value of U within V is:  
 
 
At time t, the left and the right waves have reached: 
 
Thus: 
 
 
But we also have: 
 
 
Thus we obtain U*:  
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Second step (HLL) 

But what we want, is to determine F*, so the job is not finished yet 

(F(U*) is not a good solution).  Assume first that: λL<0, λR>0 

Let us consider a new volume of control, delimited by X=-L and X=0. Then we 
have: 

 

and thus: 

Note that this expression is symmetrical in R <=> L indicating that we could 
have used X=0, X=L as volume of control and find the same result. 

If now we assume that: λL>0, λR>0, that is to say the left state propagates 
faster than the fastest wave in the right direction, the same calculation shows 
that FHLL=FL. In the same way λL<0, λR<0 implies FHLL=FR 

 

 

 

 

 

 

 

€ 

S × ((L + λL t) ×UL − λL t ×U
*) = SL ×UL + (FL − F

*)t

€ 

F * = FL + λL (U
* −UL ) =

λRFL − λLFR + λLλR (UR −UL )
λR − λL

€ 

λL < 0,λR > 0→ FHLL = F * =
λRFL − λLFR + λLλR (UR −UL )

λR − λL
λL > 0,λR > 0→ FHLL = FL
λL < 0,λR < 0→ FHLL = FR

€ 

Note that : FL → F * when λL → 0



Which wave speed ?  
In principle, determining the correct wave speeds would require to solve the 
problem exactly first… Fortunately, good estimates can be made.  
 
Davis (1988) propose: 
 
 
while Einfeldt et al. (1991) propose:  
 
 
where λl and λm are respectively the smallest and largest wave speeds and λroe are 
the Roe wave speeds.  
 
Positivity of the scheme  
In the hydrodynamical case, the scheme ensures positivity that is to say, density 
and pressure remain positive (Einfeldt et al. 1991). The common experience is that 
the scheme is very robust. 
 
However, the scheme does not resolve contact discontinuities and is therefore very 
diffusive. Single-state approximation should be extended to a two or multi-state 
approximation.   
Note when λL=λR is enforced, the scheme is called Lax-Friedrich solver. 

€ 

SL =min[λl (UL ),λl (UR )]
SR =max[λm (UL ),λm (UR )]

€ 

SL =min[λl (UL ),λl (URoe )]
SR =max[λm (UL ),λm (URoe )]



   The HLLC  Riemann solver (hydro case) 
3 waves solver (Toro 1999):  

2 fast waves  and 1 entropy wave. Thus, 2 intermediate states UL* and UR*.  

First step (HLLC) 

It is assumed that the normal velocity is constant over the Riemann fan, thus, the 
wave velocity of the entropy wave is 

Second step (HLLC)	


λM, or equivalently, u* has to be guessed. Since u is the same in the 2 states a 
good choice is: 

x UL UR 

t 

λL 
λR UL

* UR
* 

λM 

€ 

λM = uL
* = uR

*

€ 

λM = uL
* = uR

* =
(ρu)
ρ*

*

=

(λR − uR )ρRuR − (λL − uL )ρLuL − PR + PL
(λR − uR )ρR − (λL − uL )ρL



Third step (HLLC) 
We need to determine the remaining quantities in the two star states.  
We apply the jump conditions across the left and right waves, λL, λR: 
 
 
 
 
Thus, we obtain the pressure P* (use expression of λM to show that PL*=PR*): 
 
 
 
and the other quantities: 
 
 
 
 
 
 
 
 
where α=L or R  

€ 

λLUL − FL = λLUL
* − FL

*

λRUR − FR = λRUR
* − FR

*

€ 

ρα
* = ρα

λα − uα
λα − λM

vα
* = vα

wα
* = wα

eα
* =
(λα − uα )eα − Pαuα + P*λM

λα − λM

€ 

P* = Pα
* = Pα + ρα (λα − uα )(λM − uα )



Fourth step (HLLC) 
We need to determine the flux used to update UL and UR. We proceed as for  
HLL. 
 
 
 
 
 
 
 
 
Note again the continuity of the flux since for example: 
 
 
Batten et al. (1997) show that the HLLC solver is positively conservative if 
the wave speeds are as indicated previously.  
 
This solver can resolve contact discontinuities. It is therefore less diffusive 
than HLL. Can we generalise it to MHD ?  
Since, contrarily to HLL, HLLC uses  jump conditions, generalisation is not at 
all straightforward.    

€ 

λL < 0,λM > 0→ FHLLC =
λM FL − λLFL

* + λLλM (UL
* −UL )

λM − λL

λR > 0,λM < 0→ FHLLC =
λRFR

* − λM FR + λRλM (UR −UR
*)

λR − λM
λL > 0,λR > 0→ FHLLC = FL
λL < 0,λR < 0→ FHLLC = FR

€ 

FHLLC → FL
* → FR

* when λM → 0



               Problem in generalising HLLC to MHD 
Gurski (2004), Linde (2002) 
 
In the case Bx = 0, HLLC can be generalised (no Alfven wave in this case). 
However, in the general case Bx is not zero and Alfven waves propagate. 
 
The jump conditions across the 2 fast waves are not compatible with the jump 
conditions across the contact discontinuity. 
 
This leads to problems: 
-the solver cannot resolve well Alfven waves and slow waves. 
-attempt to improve this, leads to unphysical oscillations   
 
 
The problem is that there is not enough degrees of freedom with 2 states to 
describe one entropy wave and 2 Alfven waves. 



   The HLLD  Riemann solver (MHD solver) 
5 waves solver (Miyoshi & Kusano 2005):  

2 fast waves, 2 Alfvén waves and 1 entropy wave. Thus, 4 intermediate states 
UL*, UL** and UR*, UR**.  

First step (HLLD)  

assumed that the normal velocity is constant over the Riemann fan, thus, the 
wave velocity of the entropy wave is 

Second step (HLLD)  	


λM or equivalently, u* has to be guessed. As for HLLC: 

x UL UR 

t 

λL λR 

UL
* UR

* 

λM € 

λM = uL
* = uR

* = uL
** = uR

**

€ 

λM = uL
* = uR

* = uL
** = uR

** =
(ρu)
ρ*

*

=

(λR − uR )ρRuR − (λL − uL )ρLuL − PR + PL
(λR − uR )ρR − (λL − uL )ρL

UL
** UR

** 
λ*L λ*R 



Third step (HLLD) 
Determine all quantities in the two star states by applying the jump conditions 
across the left and right waves, λL, λR: 
 
 
As for HLLC, the pressure P* (use expression of λM to show that PL*=PR*): 
 
 
 
and the other quantities: 
 
 
 
 
 
 
                                                                                             same for w and Bz 
           
                                                                                                  where α=L or R  

€ 

λαUα − Fα = λαUα
* − Fα

*

  

€ 

ρα
* = ρα

λα − uα
λα − λM

vα
* = vα − BxByα

λM − uα
ρα (λα − uα )(λα − λM ) − Bx

2

Byα
* = Byα

ρα (λα − uα )
2 − Bx

2

ρα (λα − uα )(λα − λM ) − Bx
2

eα
* =
(λα − uα )eα − PTα

uα + PT
*λM + Bx (

 
V α .
 
B α −

 
V α

*.
 
B α

*)
λα − λM

€ 

P* = Pα
* =

ρRPTL (λR − uR ) − ρLPTR (λL − uL ) + ρLρR (λR − uR )(λL − uL )(uR − uL )
ρR (λR − uR ) − ρL (λL − uL )



Fourth step (HLLD) 
Determine some quantities in the two star states by applying the jump 
conditions across the two left and right star waves, λL*, λR*: 
 
 
Since normal velocity is constant through the fan,  
for any wavelength such that  λL<λ<λM or λM<λ<λR , the density and pressure 
are constant (star wave are alfvén waves) 
 
 
Fifth step (HLLD) 
Determine  the wave speed λL*, λR*. Since these are Alfvén waves, it seems 
appropriate to choose: 
 
 
 
Sixth step (HLLD) 
Apply jump conditions through the contact discontinuity. This shows that 
transverse v, w, By and Bz are constant (as expected for a contact 
discontinuity).  
 

€ 

λα
*Uα

* − Fα
* = λα

*Uα
** − Fα

**

€ 

λM = uL
* = uR

* = uL
** = uR

**

€ 

ρα
* = ρα

**, PTα
* = PTα

**

€ 

λL
* = λM −

Bx

ρL
*
,uR

* = λM +
Bx

ρL
*

€ 

vα
** = v**, Byα

** = By
**,wα

** = w**, Bzα
** = Bz

**



Seventh step (HLLD) 
Determine, v **, w **, By **, Bz

** 

For this purpose, use conservation within the volume of control as for HLL 
but with 5 waves instead of 2. 
 
 
 
 
This leads to: 
 
 
 
 
 

€ 

(λR − λR
*)UR

* + (λR
* − λM )UR

** + (λM − λL
*)UL

** + (λL
* − λL )UL

* − λRUR + λLUL

−FL + FR = 0

€ 

v** =
ρL
* vL

* + ρR
* vR

* + (ByR
* − ByL

* )sign(Bx )

ρL
* + ρR

*

By
** =

ρL
* ByL

* + ρR
* ByR

* + (vR
* − vL

* )sign(Bx )

ρL
* + ρR

*



€ 

λL > 0→ FHLLD = FL
λL < 0 < λL

* → FHLLD = FL
*

λL
* < 0 < λM → FHLLD = FL

**

λM < 0 < λR
* → FHLLD = FR

**

λR
* < 0 < λR → FHLLD = FR

*

λR < 0→ FHLLD = FR

Eighth step (HLLD): 
Now compute the flux by using volume of control centered on X=0. 
Since more star states, flux are slightly more complex than with HLL. 

 
 
 
 
The flux is then: 

€ 

FL
* = FL + λL (UL

* −UL ) if λL
* > 0

FL
** = FL + λL (UL

* −UL ) + λL
*(UL

** −UL
*) if λL

* < 0 < λM



Final  remarks about HLLD: 
 
 
 
The solver can resolve exactly isolated discontinuities including rotational 
discontinuities  (Alfvén waves) and shocks. 
 
As expected it does not resolve well slow magneto-accoustic waves. 
 
Miyoshi & Kusano show that it preserves positivity. 
 
 
It is a non-linear relatively accurate and robust solver. 
=> Tends to be widely used. 



HIGH ORDER SCHEMES 
 

accuracy versus stability 
 
 
The MUSCL-Hancock scheme 

The Monotonic Upstream Centred 
Scheme  

for Conservation Laws 



So far, the method was first order since each cell is described by a constant 
value. First order methods are very diffusive.  
 
How to increase the order of the method ? 
 
Replace the uniform state by a gradient  
=> increase the order of the method. 
 
Necessary to compute: un

i,L=un
i-1/2 and un

i,R=un
i+1/2  

 
It is necessary also, to be in second order in times to compute these values 
 a time t+1/2Δt 

xi 
 

xi+1 
 

un
i 

 

un
i+1 

 
 

 
 

  

 

€ 

Fi+1/ 2
n+1/ 2 =

1
Δt

F(U(xi+1/ 2,t))dtt n

t n+1

∫
≈ F(Ui+1/ 2

n+1/ 2)

un
i 

 

un
i,L 

 
un

i,R 
 

The Muscl-Handock scheme 



€ 

Ui+1/ 2,L
n+1/ 2 ≈Ui

n +
Δt
2

∂U
∂t

% 
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) 
* 
i

+
Δx
2

∂U
∂x
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Ui+1/ 2,R
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Δt
2

∂U
∂t
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( 

) 
* 
i

−
Δx
2

∂U
∂x

% 

& 
' 

( 

) 
* 
i

The predictor states are calculated using Taylor expansion: 
  
 
 
 
 
 
The time derivative is estimated by calculating the fluxes at time tn. 
 
The space derivatives are computed using the neighbours (but some 
difficulties will appear soon…). 
 
Summary of the scheme: 
 
-compute the boundary extrapolated values 
 
-evolve them at time Δt/2 
 
-solve the Riemann fluxes 
 
-update the variables using the fluxes 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem with the reconstruction:  
High order (>2) linear methods are not monotone (Godunov theorem) 
 
⇒ Spurious numerical oscillations and instabilities in the vicinity of 
gradients. 

This implies that the slope must be adequately chosen. In particular, it 
must satisfy the TVD (Total Variation Diminishing) constraint. 
 
Total Variation:  
  

€ 

TV (u) = u'(x) dx
−∞

∞

∫ ⇒ TV (un ) = ui+1
n − ui

n

i=−∞

∞

∑





Solution: use non-linear slope (slope limiter)  
 
Generally speaking, we have: 
 
 
 
 
Many slopes Δi can be constructed. 
 
 
 
 
A very useful, widely used choice is the MINMOD slope: 
 
 
 
 
Robust but diffusive (i.e. not very accurate) 
 
In general, slopes are an important issue. Better to test various choices. 

un
i 

 

un
i,L 

 
un

i,R 
 

€ 

ui,L
n = ui

n +
1
2
Δ i, ui,R

n = ui
n −
1
2
Δ i

€ 

Δ i,L = ui
n − ui−1

n ,Δ i,R = ui+1
n − ui

n ,Δ i,C = (ui+1
n − ui−1

n ) /2
Δ i = f (Δ i,L ,Δ i,R ,Δ i,C )

€ 

ΔL > 0, Δ i =max 0,min(Δ i,L ,Δ i,R )[ ]
ΔL < 0, Δ i =min 0,max(Δ i,L ,Δ i,R )[ ]

# 
$ 
% 

& % 



TESTING the SCHEME 
 

Importance of code testing cannot be over-
emphasized… 



Have we wasted our time ? 

Maybe not… 

Zeus 

Riemann solver 

Riemann solver 

Zeus 

Rarefaction shock 
Inacurate Jump 
conditions 

Falle 2002 



                             1D Tests for MHD  
The non-linear circularly polarized Alfvén wave  
(e.g. Fromang et al. 2006) 

This is an exact and explicit solution 

of MHD equation 

=>very convenient to test the codes 

Can be written as: 

 

€ 

Bx = cst,Vx = 0,
Vy = A ×Va cos(ωt − kx),
By= A × Bx cos(ωt − kx),
Vz = A ×Va sin(ωt − kx),
Bz= A × Bx sin(ωt − kx),
ω
k

=Va



                 1D Tests for MHD:  Shock tube tests 
  
 

 

 

Miyoshi & Kuzano 2005 

Comparison between  

HLL, ROE, HLLD 

 

2 fast shocks (fast waves) 

2 Alfven waves 

2 slow waves 

1 entropy wave 

 

The 3 solvers do equaly well 
for the fast waves 

 

Roe and HLLD do better than  

HLL for the other waves 



                 1D Tests for MHD:  Shock tube tests 
  
 

 

 

Influence of the 
scheme order 

 

HLLD first and 
second order 

 

HLLC first and 
second order 



             2D Tests for MHD:  Orszag-Tang vortex test 
  
 

 

 

Famous 2D 
tests 

 

 

 

 

Comparison 
between HLL, 
HLLD and 
ROE 

  

€ 

ρ = γP0,
v = (−sin2πy,sin2πx),
B = (−B0 sin2πx,sin4πy)

γ =
5
3
,P0 =

5
12π

,B0 =
1
4π



                  An exemple of a 3D calculation: 
 Collapse of a prestellar dense core with Lax-Friedrich solver 

 

 

 



                  An exemple of a 3D calculation: 
        Collapse of a prestellar dense core with  Roe solver 

 

 

 



MultiD-MHD 



  

€ 

∂t

 
B +
 
∇ × (

 
B ×
 
V ) = 0

 
∇ .
 
B = 0

           Specificity of the multiD MHD equations 
In multidimensionnal problems, the induction equation presents qualitatively 
new features. Let us remember that the two following equations must be 
satisfied: 
 
 
Let us consider a surface S. Stokes theorem leads to: 
 
 
 
 
which is qualitatively different from mass, energy that are volume conserved… 
The magnetic flux is defined on a surface rather than on a volume  
=> apparently difficulty to reconcile with Godunov-type methods. 
 
If div B, vanishes initially, induction equation ensures that it remains 0. 
 
 
 
 
BUT: the numerical scheme, usually, will not ensure that this is the case.  

  

€ 

∂t

 
B .d
 
S ∫∫ +

 
∇ × (

 
B ×
 
V )).d

 
S ∫∫ = 0

∂tφ + (
 
B ×
 
V ).d
 
l = 0∫

  

€ 

 
∇ .(∂t

 
B +
 
∇ × (

 
B ×
 
V )) = 0

⇒∂t (
 
∇ .
 
B ) = 0



                  Why worrying about div B=0 ? 
 (e.g. Brackbill & Barnes 1980, Toth 2000).  
In numerical approaches, all quantities are always represented approximately, so 
why should we worry about div B being none zero as long as it remains small ?  
The problem appears to be fundamental. Indeed, MHD equations on the 
conservative can be rewritten as: 
 
 
 
 
Thus, if div B is not vanishing, the equations written on the conservative form are 
not equivalent to the standard fluid equations. In particular, we see that a force 
along the field lines is now applying. 
Long time integration can then be a worry. Equilibrium solutions can be modified.  
For example Brackbill & Barnes report problems with integration of a uniform low 
beta plasma. After several crossing times, non zero flow velocities develop 
spontaneously and distord the field lines.  The problem may be less severe if we 
use non conservative form of the MHD equations but then the nice properties of 
Godunov type schemes are lost. 
 
The common experience is that non div B preserving schemes are very 
unstable and lead to code crashes.  
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∂t (ρ
 
V ) +

 
∇ (ρ
 
V 
 
V −
 
B 
 
B + PtotI) = −

 
∇ .
 
B 
 
B 

∂t E +
 
∇ .((E + P)

 
V −
 
B (
 
B .
 
V )) = −

 
∇ .
 
B (
 
V .
 
B )



                  Potential vector methods 
 (e.g. Dorfi 1986, Evans & Hawley 1988). B is volume centered. 
 
 
Vector potential defined by: 
 
 
 
div B is therefore 0 exactly. On the other hand, the Lorentz force becomes: 
 
 
 
Therefore, the Lorentz force entails second order derivatives which leads to less 
accurate results. Norman et al. (1987) argue that third order schemes should be 
used in order to provide first-order accuracy for the Lorentz force. 
 
 
In particular, in the vicinity of sudden changes in the characteristic length scale, 
truncation errors become very important leading to unphysical current and forces. 
The second order scheme makes the problem even more severe. 
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j ×
 
B = (

 
∇ ×
 
B ) ×

 
B = (

 
∇ × (

 
∇ ×
 
A ))× (

 
∇ ×
 
A )

  

€ 

 
∇ ×
 
A =
 
B 

Thus :
 
∇ .
 
B =
 
∇ .(
 
∇ ×
 
A ) = 0



                               Powell’s methods 
 (e.g. Powell et al. 1999, Toth 2000). B is volume centered. 
 
Main idea is to solve the equations on conservative form but keeping the div B 
terms as source terms: 
 
 
 
 
 
Advantage: fundamental properties are preserved (e.g. Galilean invariance) 
 
Disadvantage: equations not conservative therefore shock conditions are not 
satisfied. 
 
Since Bx is not constant, the 1D problem presents now eight waves instead of 
seven.   
 
A Roe-type solver is developed which propagates the eight waves. 
 
The method works but leads sometimes to inaccurate jump relations.  
See comparison in the test part (Toth 2000).  
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∂tU +
 
∇ F = S

S = (0,−
 
∇ .
 
B 
 
B ,−
 
∇ .
 
B  u ,−

 
∇ .
 
B ( u .
 
B ))



                               Projection methods 
 (e.g. Brackbill & Barnes 1980, Toth 2000, Crockett et al. 2005). B is volume centered. 
 
 
Main idea: after having updated the magnetic field, calculate a correction which will 
ensure that div B=0. 
 
Let us consider the Poisson equation: 
The new field B’ is divergenceless. 
 
 
Note that It can be shown that for a cartesian grid this corresponds to the closest field 
which satisfy div B=0 (Toth 2000). 
 
Similar method is sometimes used in incompressible hydrodynamical studies to 
enforce div V =0. 
 
Advantages of the method:  
 
-can be combined with any scheme  
-B is volume centered (simple).  
 
 
 

  

€ 

Δφ +
 
∇ .
 
B = 0→

 
B '=
 
B +
 
∇ φ

⇒
 
∇ .
 
B '=
 
∇ .(
 
B +
 
∇ φ) = 0



Disadvantages of the method: 
 
-problem with energy conservation. Since B changes but not E, it implies that e is 
changing (can sometimes become negative). 
 
-it is possible to recalculate the total energy to enforce conservation of internal 
energy, but then total energy is not conserved any more.  
 
-the magnetic flux is not conserved. Problem may arise near discontinuities 
where large values of div B will be generated and where the conservation 
properties are essential to insure jump relations. 
 
-a Poisson equation must be solved. Extra efforts and cpu costs. Possible 
problems may arise due to boundaries depending on the Poisson solver. 
 
 
In practice however, the scheme seems to work well for a large set of problems  
and tends to be widely used (see  the comparisons in the test part). 
An extension has been proposed by Dedner et al. (2002) who develop hyperbolic 
(instead of elliptic) divergence cleaning. 



                    Constrained transport methods 
 (e.g. Evans & Hawley 1988, Toth 2000). B is face centered. 
 
 
 
 
Induction equation suggests that the relevant quantity (analogous to density) is 
the flux, that is the integral of the magnetic field on a surface.  
It also suggests that the flux should be updated by performing some circulation 
on a close circuit. 
Thus, magnetic field should be defined in the center of the face, the mesh is 
staggered. 
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b x,i−1/ 2, j ,k (t) =
1

ΔyΔz
dy 'dz'bx (t,xi−1/ 2,y',z')yi−1/2 ,zi−1/2
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b y,i, j−1/ 2,k (t) =
1

ΔxΔz
dx 'dz'by (t,x ',y j−1/ 2,z')xi−1/2 ,zi−1/2

xi+1/2 ,zi+1/2∫
in 3D



                           CT: The electric field 
 (e.g. Evans & Hawley 1988, Toth 2000). B is face centered. 

 
Circulation around the faces must be performed integrating the electromotor 
field: VxB, located at the edges of the cells. 

xi,yj,zk 

bx,i+1/2,j,k 
by,i,j-1/2,k 

bz,i,j,k+1/2 

E z,i+1/2,j+1/2,k 

E y,i+1/2,j,k-1/2 

E y,i+1/2,j,k+1/2 
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b x,i−1/ 2, j ,k (Δt) = b x,i−1/ 2, j,k (0) +
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Δt
Δx
(E y,i+1/ 2, j,k−1/ 2 − E y,i−1/ 2, j ,k−1/ 2) −

Δt
Δy
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ΔtΔx
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ΔtΔz
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zk+1/2∫ Ez (xi−1/ 2,y j−1/ 2,z)0

Δt
∫

The equivalent of the volume averaged quantities and surface 
averaged flux used in Godunov type scheme is: 

As for volume averaged quantities, these expressions are exact but again 
approximations will be made in calculating the flux, E. 



                         CT: Exact nullity of div B 
 

Ei-1/2,j+1/2 Ei+1/2,j+1/2 

Ei+1/2,j-1/2 Ei-1/2,j-1/2 

- + 

+ 

- - 

+ 

- + 



                         CT: Exact nullity of div B 
                                  (e.g. Evans & Hawley 1988, Toth 2000).  
With these definitions, the volume centered divergence vanishes exactly if it vanishes 
initially. This is shown as followed: 
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Δx
+

b y,i, j +1/ 2,k (0) − b y,i, j−1/ 2,k (0)
Δy

+
b z,i, j ,k +1/ 2(0) − b z,i, j ,k−1/ 2(0)

Δz
+

Δt
ΔxΔy

(E z,i+1/ 2, j +1/ 2,k − E z,i+1/ 2, j−1/ 2,k ) −
Δt
ΔxΔz

(E y,i+1/ 2, j ,k +1/ 2 − E y,i+1/ 2, j,k−1/ 2) − (i +1/2↔ i −1/2)

Δt
ΔyΔz

(E x,i, j +1/ 2,k +1/ 2 − E x,i, j +1/ 2,k−1/ 2) −
Δt

ΔyΔx
(E z,i+1/ 2, j +1/ 2,k − E z,i−1/ 2, j +1/ 2,k ) − ( j +1/2↔ j −1/2)

Δt
ΔzΔx

(E y,i+1/ 2, j ,k +1/ 2 − E y,i−1/ 2, j,k +1/ 2) −
Δt
ΔzΔy

(E x,i, j +1/ 2,k +1/ 2 − E x,i, j−1/ 2,k +1/ 2) − (k +1/2↔ k −1/2)

= div b(0) + 0 = 0



 
Advantage of constrained transport method: 
 
-div B vanishes to machine accuracy 
 
-clear formulation of the average magnetic field and magnetic flux 
 
-for some aspects, method well suited to Godunov type approaches 
In particular the Bx component is already defined on the face where it is 
needed to calculate the flux.  
 
 
 
Disadvantage of the method:  
 
-calculating the electric field is NOT straighforward (as we will see…) 
 
-extra calculations and extra CPU costs  
 
-for some other aspects, method not well suited to Godunov type approach 
By component is not defined where it is needed. 



  Calculating the electric field: method of characteristic 
          (e.g. Evans & Hawley 1988, Stone & Norman 1992).  
 
MOC: introduced by Evans & Hawley (velocity centered and B is staggered) 
MOC-CT: introduced by Stone & Norman and used in ZEUS (V and B 
staggered). 
 
The problem is that any electric field will ensure div B=0 as long as the CT 
method is used BUT stability is not ensured. Some upwinding is therefore 
necessary. 
 
Evans & Hawley simply interpolate the velocity field. They use upstream 
interpolation (which insures stability, following approximately the 
characteristic) to compute the components of B.  
 
Stone & Norman find that this method does not provide good description of 
the shear Alfvén waves. They take advantage of V and B being located at the 
same place in ZEUS and proceed as follows: 
 
-ignoring compressibility  
(discarding fast and slow waves), one can write 
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∂tv =
Bx

ρ
∂xBy − u∂xv

∂tBy = Bx∂xv − u∂xBy



Thus: 

 

 

 

 
This implies that v+/-By/ρ1/2 follows the characteristics with velocity u+/-Bx/ρ1/2 and 
are therefore invariant along them.   

 

 

 

Thus one needs to determine v+, B+ and v- , B-. 

This is achieved by tracking back the two  

characteristics as shown in the  

graph: 
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               Calculating the electric field: field interpolation 
                          (Dai & Woodward 1998, Toth 2000 ).  
 
Idea: estimate the electric field by interpolating the velocity and magnetic field 
variables 
 
Dai & Woodward interpolate the variables and proceed as follows: 
-at time t, the staggered field bx,i+1/2,j,   by,i,j+1/2 , is known. 
-simple average gives the centered magnetic field: Bx,i,j =1/2(bx,i-1/2,j + bx,i+1/2,j ). 
-solve the 4 (6 in 3D)  Riemann problems leading to new centered magnetic field B 
-obtain estimated edge centered magnetic and velocity field through: 
 
 
 
 
 
 
 
 
 
-finally compute new b (face centered magnetic field) by CT method. 
 
Preserve div B=0 but no upwinding => likely unstable 
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            Calculating the electric field: flux interpolation 
          (Ryu et al. 1999, Balsara & Spicer 1999, Toth 2000, Ziegler 2005 ).  
 
Idea: estimate the electric field by interpolating the fluxes computed at the face 
center 
 
Balsara & Spicer  interpolate proceed as follows: 
-at time t, the staggered field bx,i+1/2,j,   by,i,j+1/2 , is known 
-solve the 4  Riemann problems gives 4 fluxes at the face center 
-obtain the electric field at the edge (along z) by simple flux averaging 
 
 
 
 
 
 
-finally compute new b (face centered magnetic field) by CT method. 
 
However, with this formulation the flux of a 1D problem calculated with a 2D code 
is not identical to the flux obtained with a 1D code. Ryu et al. (1999) present a 
slightly different formulation which has this property. 
 
Preserve div B=0 but no « proper » upwinding => likely unstable 
(some upwinding in flux calculations) 
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with ∂tU + ∂xF + ∂yG = 0,
F7 = −Ez, G6 = Ez,

Ei+1/ 2, j+1/ 2
n+1/ 2 =

1
4
G6,i+1/ 2, j

n+1/ 2 +G6,i−1/ 2, j
n+1/ 2 − F7,i, j+1/ 2

n+1/ 2 − F7,i, j−1/ 2
n+1/ 2( )



Calculating the electric field: 2D Riemann solver 
(Londrillo & Del Zana 2000, 04, Gardiner & Stone 2005, Fromang et al. 2006).  

 
Most recently, it has been realized that electric field should be upwinded in a 
similar way than in the cell centered formulation. Formally, the problem can be 
thought as a 2D Riemann problem. That is 4 states are now interacting instead 
of 2. Proper flux estimate can be performed following this line, ensuring stability. 
 
Londrillo & Del Zana and Fromang et al. proceed as follow: 
-consider a linear solver (like Roe solver) 
-in the 1D case, the flux is: 
 
-a natural 2D generalisation of this is: 
 
 
 
 
 
 
 
where the 2 Roe matrix are  
constructred by considering:  
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           Calculating the electric field: 2D Riemann solver 
                                         (Londrillo & Del Zana 2004).  
 
For non linear solver, like HLL, there is no systematic way of generalising the solver 
and this can be tricky.  
 
For HLL, a natural generalisation can be obtained (Londrillo & Del Zana, 2004). It takes 
advantage of the staggered mesh and assume that the problem entails only 4 waves 
by taking  e.g. λx,R=max(λx,RL,λx,RR). 
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           Calculating the electric field: 2D Riemann solver 
                                         (Gardiner & Stone 2005).  
 
Gardiner & Stone present another approach slightly different but not far from 
the 2D solver methodology.  
 
They transport the electric field calculated at the 4 neighbouring face center 
(given by the 4 1D Riemann problems), writing: 
 
 
 
 
 
 
 
 
Then the « gradient » of the electric field are estimated with induction equation 
and some upwind procedure (e.g. Lax-Friedrich solver). 
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           Calculating the electric field: 2D Riemann solver 
                                          
 
In all the former cases, the 1D flux is exactly recovered in the limit when the 2D flow 
becomes equivalent to a 1D situation.  
 
 
The solvers are all properly upwinded therefore ensuring numerical stability. 
 
 
 
Numerical tests indicate that this approach is indeed robust and accurate. 
 
 
 
One disadvantage is its cost since 4 (8) bidimensional Riemann solvers have to be 
solved for each cell in 2D (3D). 
 
 
In the same way, reconstruction must also be performed at the edge and not only in 
the face center.  



by,i,j-1/2 

by,i,j+1/2 

bx,i+1/2,j bx,i-1/2,j Vx,i,j 

Vx,i,j-1 

Reconstruction of V and B for 2nd order accuracy of the 
Lorentz force 

bx is already in place ! 



by,i,j-1/2 

by,i,j+1/2 

bx,i+1/2,j bx,i-1/2,j Vx,i,j 

Vx,i,j-1 

Reconstruction of V and B for 2nd order accuracy of the 
electric field at the edge  



                         2D tests: testing the method 
Rotated shock tube test (Toth 2000), look at Bpara which ideally 
Is constant. 

8-waves: incorrect jump 
and large errors 

 

Projection: large errors 

 

CT methods: smaller 
errors 

Flux-CT is the best 



                         2D tests: testing the method 

projection 

8-wave 

High resolution 

Orszag-Tang 
Vortex 

Toth 2000 Field  
interpolation 

Flux interpolation 



Fromang et al. 2006 (Ramses) Dai & Woodwards 1998 

                         2D tests: code comparison 
Orszag-Tang vortex resolution 512 



Athena code 
(Gardiner & Stone 
2005) 
 
 
Ortzag-Tang 
Vortex 
 
 
 
4 resolutions 
64,128,256, 
512 



                         2D tests: testing the method 

Fast rotor (Toth 2000): 

Taken from Mouschovias & 
Paleologou 1980, first done 
by Balsara & Spicer 1999 

 

A dense cylinder rotates 
inside a diffuse medium, a 
transverse magnetic field 
threaded the 2-media.   
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