Radiation-hydrodynamics from Mpc to sub-pc scales with RAMSES-RT

Joki Rosdahl (CRAL)

With Aubert, Blaizot, Bieri, Biernacki, Commercon, Costa, Courty, Dubois, Geen, Katz, Kimm, Nickerson, Perret, Schaye, Stranex, Teyssier, Trebitsch ASTROSIM summer school, July 7th, 2017

What is RAMSES-RT?

What is RAMSES-RT?

Multi-purpose radiation-hydrodynamics

Rosdahl et al. (2013) Rosdahl & Teyssier (2015)

- Part of the cosmological code RAMSES (Teyssier '01)
- Publicly available (www.bitbucket.org/rteyssie/ramses)
- Emission of photons from e.g. stars, AGN, gas
- Transport of photons through the 3D volume, on-the-fly with hydro, and in adaptive mesh refinement
- Hydro-coupled absorption and scattering by gas and dust
 - Photoionisation and heating of H, He, H₂ (and eager to add more!)
 - Radiation pressure, i.e. momentum transfer from photons to gas
 - Multi-scattering on dust

How do ionising photons interact with primordial gas?

photoionisation, heating, pressure, recombinations

What is RAMSES-RT for?

What is RAMSES-RT for?

- Observable properties of gas in and around galaxies Rosdahl+12, Katz+17
- Stellar/AGN radiation feedback Rosdahl+15, Geen+15-16-17, Bieri+16, Gavagnin+17, Costa+17
- Ionising radiation escape from galaxies Kimm+14, Kimm+17, Trebitsch+17, Katz+17
- Large-scale reionisation (recently feasible with variable light speed)
- H₂ formation and destruction Butler+17
- Protostar formation

...but not for...

- 'Line' radiative transfer and PDR diagnostics Monte Carlo
- Situations where strong shadows are important
- More about dynamical effects of radiation than diagnostics

Photoionisation heating

Radiation pressure

IR radiation pressure on dust can be stronger because of multiscattering pressure boost

$$\dot{p}_{\rm rad} = \frac{L_{\rm Opt}}{c} \tau_{\rm IR}$$

Photoionisation feedback in molecular clouds with RAMSES-RT Gavagnin et al. (2017)

Effect of ionising radiation on emerging stellar population and runaway stars

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

main challenges in numerical approaches

To solve this numerically, we need to overcome two main problems:

main challenges in numerical approaches

To solve this numerically, we need to overcome two main problems:

I. There are seven dimensions! Hydrodynamics have only four!

main challenges in numerical approaches

To solve this numerically, we need to overcome two main problems:

- I. There are seven dimensions! Hydrodynamics have only four!
- II. The timescale is $\propto u^{-1}$, where u is *speed*, and $u_{\text{light}} \sim 1000 u_{\text{gas}}$, so ~ thousand RT steps per hydro step!!

main challenges in numerical approaches

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \mathbf{n} \cdot \nabla I_{\nu} = -\kappa_{\nu}I_{\nu} + \eta_{\nu}$$

 $I_{\nu}(\mathbf{x}, \mathbf{n}, t)$ intensity $\kappa_{\nu}(\mathbf{x}, \mathbf{n}, t)$ absorption $\eta_{\nu}(\mathbf{x}, \mathbf{n}, t)$ source function

Two common strategies for radiative transfer:

I. Ray tracing methods: Cast a finite number of rays from a finite number of sources

- Simple and intuitive
- ...but efficiently covering the volume can be tricky
- ...and load scales with number of sources/rays

II. Moment methods: Convert the RT equation into a system of conservation laws that describe a field of radiation

- Not so intuitive, and *not rays*
- ...but fits easily with a hydrodynamical solver for RHD
- ...naturally takes advantage of AMR and parallellization
- ...no problem with covering the volume
- ... no limit to number of radiation sources

151.7 Myr

 $10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4}$

 $n_{
m H} \, [{
m cm}^{-3}]$

I have been a series of the series of the

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

Moments of the RT equation

to get rid of the angular dimension

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \mathbf{n} \cdot \nabla I_{\nu} = -\kappa_{\nu}I_{\nu} + \eta_{\nu}$$

$$I_{\nu}(\mathbf{x}, \mathbf{n}, t) \text{ intensity}$$

$$\kappa_{\nu}(\mathbf{x}, \mathbf{n}, t) \text{ absorbtion}$$

$$\eta_{\nu}(\mathbf{x}, \mathbf{n}, t) \text{ source function}$$
Zeroth moment: $\oint f(\mathbf{n}) d\Omega$

$$\frac{1}{c}\frac{\partial}{\partial t} \oint I_{\nu} d\Omega + \nabla \oint \mathbf{n} I_{\nu} d\Omega = -\kappa_{\nu} \oint I_{\nu} d\Omega + \eta_{\nu} \oint d\Omega$$
First moment: $\oint \mathbf{n} f(\mathbf{n}) d\Omega$

$$\frac{1}{c}\frac{\partial}{\partial t} \oint \mathbf{n} I_{\nu} d\Omega + \nabla \oint \mathbf{n} \otimes \mathbf{n} I_{\nu} d\Omega = -\kappa_{\nu} \oint \mathbf{n} I_{\nu} d\Omega$$

These equations contain the first three moments of the intensity:

$$E_{\nu} = \frac{1}{c} \oint I_{\nu} d\Omega \qquad (\text{energy per volume and frequency}),$$

$$\mathbf{f}_{\nu} = \oint \mathbf{n} \ I_{\nu} d\Omega \qquad (\text{energy flux per area and time and frequency}),$$

$$\mathbb{P}_{\nu} = \frac{1}{c} \oint \mathbf{n} \otimes \mathbf{n} \ I_{\nu} d\Omega \qquad (\text{force per area and frequency}),$$

$$\frac{\partial E_{\nu}}{\partial t} + \nabla \cdot \mathbf{f}_{\nu} = -\kappa_{\nu} c E_{\nu} + S_{\nu}$$
$$\frac{\partial \mathbf{f}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbf{p}_{\nu} = -\kappa_{\nu} c \mathbf{f}_{\nu}$$
Joakim Rosdahl

Moment RT equations

$$\frac{\partial E_{\nu}}{\partial t} + \nabla \cdot \mathbf{f}_{\nu} = -\kappa_{\nu} c E_{\nu} + S_{\nu}$$

$$E_{\nu} = \frac{1}{c} \oint I_{\nu} d\Omega \qquad \text{(energy per volume and frequency)}$$

$$f_{\nu} = \oint \mathbf{n} I_{\nu} d\Omega \qquad \text{(energy flux per area and time and frequency)}$$

$$\frac{\partial \mathbf{f}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbf{p}_{\nu} = -\kappa_{\nu} c \mathbf{f}_{\nu}$$

$$\mathbb{P}_{\nu} = \frac{1}{c} \oint \mathbf{n} \otimes \mathbf{n} I_{\nu} d\Omega \qquad \text{(force per area and frequency)}$$

With ionizing radiation, it makes more sense to keep track of *photon number density* than energy density

$$\frac{\partial N_{\nu}}{\partial t} + \nabla \cdot \mathbf{F}_{\nu} = -\sum_{j}^{\text{HI,HeI,HeII}} n_{j} c \sigma_{\nu j} N_{\nu} + \dot{N}_{\nu}^{*} + \dot{N}_{\nu}^{rec} \\ \frac{\partial \mathbf{F}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbb{P}_{\nu} = -\sum_{j}^{\text{HI,HeI,HeII}} n_{j} c \sigma_{\nu j} \mathbf{F}_{\nu} \\ \frac{\partial \mathbf{F}_{\nu}}{\partial t} + c^{2} \nabla \cdot \mathbb{P}_{\nu} = -\sum_{j}^{\text{HI,HeI,HeII}} n_{j} c \sigma_{\nu j} \mathbf{F}_{\nu}$$

Frequency binning

We separate the RT equations into M sets, or photon groups, that discretise the frequency continuum

➡M (a handful of) separate radiation fields, one per frequency bin, with average photon energies and cross sections

Radiation variables, stored in each cell

one set per photon group (neglecting the i-index)

Describe isotropic plus directed radiation in each volume element (cell)

We almost have usable expressions - we 'only' need to close the equations Joakim Rosdahl

Closing the moment RT equations

Three closures:

I: Flux limit diffusion: Radiation flows in the direction of less radiation Good description in the optically thick limit

II: (OT)VET: (Optically thin) variable Eddington tensor: The tensor (direction of flow) is made from the sum of all sources Nonlocal expression, so computationally challenging.

M1 closure

An expression for \mathbb{D} must conserve photons and preserve flux. Should also be local (i.e. derived only from quantities within the cell).

Levermore 1984:

Examples

M1 closure - a warning

The loss of the angular dimension combined with the locality of M1 results in peculiar radiation propagation

We sacrifice the collision-less nature of photons

$$\frac{\partial N}{\partial t} + \nabla \cdot \mathbf{F} = -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j}\sigma_{j}cN + \dot{N}^{\star} + \dot{N}^{rec}$$
$$\frac{\partial \mathbf{F}}{\partial t} + c^{2}\nabla \cdot \mathbb{P} = -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j}\sigma_{j}c\mathbf{F}$$
$$\mathbb{P} = \mathbb{D}N$$

Solving the M1 moment RT equations on a uniform grid

Solving the RT moment equations on a grid

Operator splitting: separate into **3 steps** that can be solved in

order over one discrete timestep at a time:

$$t^n \to t^{n+1} = t^n + \Delta t$$

Photon transport

Photon transport

Intercell flux function

$$\mathcal{U}_{l}^{n+1} = \mathcal{U}_{l}^{n} + \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{l-1/2}^{n} - \mathcal{F}_{l+1/2}^{n} \right)$$

$$\mathcal{U} \equiv (N, \mathbf{F})$$

$$\mathcal{F} \equiv (\mathbf{F}, c^{2} \mathbb{P})$$
How do we pick $\mathcal{F}_{\ell+1/2}$??
Simplest case is average between cells:
$$\mathbf{Harten-La} \mathcal{F}_{l} \mathbf{van} \mathcal{F}_{l,q} \mathbf{er} - \mathbf{V}_{l} \mathbf{f}_{l+1} = \mathcal{U}_{l}^{n} + \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{l-1} + \mathcal{F}_{l+1} \right)$$

$$\mathcal{F}_{l+1/2} = \frac{\lambda^{+} \mathcal{F}_{l} - \lambda^{-} \mathcal{F}_{l+1} + \lambda^{+} \lambda^{-} \left(\mathcal{U}_{l+1} - \mathcal{U}_{l} \right)}{\lambda^{+} - \lambda^{-}}$$

$$\lambda^{+} = \max(0, \lambda_{l}^{\max}, \lambda_{l+1}^{\max}) \\ \lambda^{-} = \min(0, \lambda_{l}^{\min}, \lambda_{l+1}^{\min}) = \text{angle-dependent 'speeds'} = \text{eigenvalues of } \frac{\partial \mathcal{F}}{\partial \mathcal{U}}$$

a simpler flux function

$$\textbf{HLL:} \quad \mathcal{F}_{l+1/2} = \frac{\lambda^{+}\mathcal{F}_{l} - \lambda^{-}\mathcal{F}_{l+1} + \lambda^{+}\lambda^{-}\left(\mathcal{U}_{l+1} - \mathcal{U}_{l}\right)}{\lambda^{+} - \lambda^{-}}$$

A stable alternative is not to bother with eigenvalues at all. In the Global Lax Friedrich function, or GLF, we make the approximation that

$$\lambda^+ = -\lambda^- = c$$

which gives

GLF:
$$\mathcal{F}_{l+1/2} = \frac{\mathcal{F}_l + \mathcal{F}_{l+1}}{2} - \frac{c}{2} \left(\mathcal{U}_{l+1} - \mathcal{U}_l \right)$$

The resulting photon transport is more diffusive than HLL, which is both good and bad

HLL vs GLF transport of photons

GLF

...I generally prefer GLF

Thermochemistry

- Hydro codes usually assume photoionisation equilibrium (PIE) where the gas ionisation fractions are a tabulated function of temperature and density
- Not ideal if we want to conserve photons
- Therefore we store and evolve ionisation fractions in each cell: $x_{\text{HII}}, x_{\text{HeII}}, x_{\text{HeIII}}$
- Molecular hydrogen is coming soon

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

The speed of light problem

The explicit advection of radiation across cells makes us slaves to the Courant condition

The reduced speed of light approximation (RSLA) Gnedin & Abel 2001

To cheat death we use the reduced speed of light approximation (Gnedin & Abel 2001):

$$c_{\rm red} = \frac{c}{1000} \quad \blacktriangleright \quad \Delta t_{\rm RT} \sim \frac{\Delta x}{c_{\rm red}} \sim \Delta t_{\rm HD}$$
$$\rightarrow \text{Only ~2X runtime increase, compared to pure hydro}$$

Not quite as bad as it sounds:

The dynamic speed in RHD simulations is that of *ionisation fronts*, not *c*.

We just want to get the front correct...

Setting the reduced speed of light

Assuming a constant luminosity in a homogeneous medium...

Regime	$n_{\rm H} ({\rm cm}^{-3})$	\dot{N} (s ⁻¹)	r _S (kpc)	t _{cross} (Myr)	t _{rec} (Myr)	$\tau_{\rm sim}$ (Myr)	$f_{ m c,\ min}$
MW ISM MW cloud Iliev tests 1, 2, 5 Iliev test 4	$ \begin{array}{r} 10^{-1} \\ 10^{2} \\ 10^{-3} \\ 10^{-4} \end{array} $	2×10^{50} 2×10^{48} 5×10^{48} 7×10^{52}	0.9 2 × 10 ⁻³ 5.4 600	3×10^{-3} 6×10^{-6} 2×10^{-2} 2	1.2 1×10^{-3} 122.3 1200	1 0.1 10 0.05	3×10^{-2} 6×10^{-4} 2×10^{-2} 1
Reionisation							

$$f_{\rm c} = \min(1; \sim 10 \times t_{\rm cross} / \tau_{\rm sim})$$

These are suggestive values...

Light speed convergence tests are the best final verdict.

Great for ISM and CGM simulations, but death for reionisation (of cosmological voids)

The variable speed of light approximation (VSLA) Katz et al. 2017

- A ~full light speed matters most in diffuse 'voids' where I-fronts are fast.
- Taking advantage of this, Harley Katz implemented in Ramses-RT a variable light-speed, making reionisation simulations feasible with RAMSES-RT
- Here, we use a slow light speed at the finest AMR level and increase with each coarser level, towards a full light speed in the coarsest 'voids' (where there are ideally few cells).

The variable speed of light approximation (VSLA) From Katz et al. 2017

Using the VSLA for high resolution reionsiation simulations

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

RHD: Coupling hydrodynamics and RT

HD equations solved in Ramses:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \frac{\partial}{\partial t} \left(\rho \mathbf{u} \right) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p &= \rho \nabla \phi\\ \frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot (\mathcal{E} + p) \mathbf{u} &= -\rho \mathbf{u} \cdot \nabla \phi + \Lambda(\rho, \varepsilon) \end{aligned}$$
$$p &= (\gamma - 1)\varepsilon\\ \mathcal{E} &= \frac{1}{2}\rho u^2 + \varepsilon \end{aligned}$$
$$\begin{aligned} \textbf{RT equations:}\\ \hline \frac{\partial N}{\partial t} + \nabla \cdot \mathbf{F} &= -\sum_{i=1}^{\text{Hi,HeI,HeII}} \left(n_j \mathbf{r}_j c N_i + \dot{N}^{\star} + \dot{N}^{rec} \right) \end{aligned}$$

$$\begin{split} \frac{\partial N}{\partial t} + \nabla \cdot \mathbf{F} &= -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j} \mathbf{r}_{j} c N + \dot{N}^{\star} + \dot{N}^{rec} \\ \frac{\partial \mathbf{F}}{\partial t} + c^{2} \nabla \cdot \mathbb{P} &= -\sum_{j}^{\mathrm{HI, HeI, HeII}} n_{j} \mathbf{r}_{j} c \mathbf{F} \\ \hline \mathbb{P} &= \mathbb{D} N \end{split}$$

Joakim Rodahl
$$\begin{aligned} \frac{\partial \varepsilon}{\partial t} &= \Lambda \left(\rho, \varepsilon, n_{j}, N_{i} \right) \end{aligned}$$

HD and RT couple where photons interact with gas

Considerations:

- We should explicitly keep track of ionization fractions,
- Non-equilibrium thermochemistry of hydrogen and helium, with local photoheating
- ...which should be done on the shorter RT timescale
- HD is left virtually unchanged, and RT is subcycled after HD timestep
 - = Operator splitting
- ...but AMR subcycling makes this tricky

The AMR timestep in Ramses Adaptive resolution both in space and time

Where does the RT fit in?

Approach a): Do a single RT step after HD on each level

Where does the RT fit in?

Approach b): Many RT steps after HD on each level

Plan c: rt_subcycle

Approach c): Many RT steps after HD on each level and lose photons across boundaries

Keep HD multistepping and time refinement, while subcycling RT

Sacrifice perfect photon conservation across level boundaries

Radiation transport across an AMR grid

- RT variables are stored in cells, in just the same way as hydro variables
- So there's not much to do here but just take advantage of native AMR strategy and interpolation schemes already in place in Ramses
- In the same way, the RHD is fully MPI parallel, as is the rest of RAMSES

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

Radiation pressure

- May play a role in suppressing star formation and even generating outflows
- Cosmo simulations often include radiation pressure as a sub-grid recipe:

Radiation pressure

 We account for the absorbed momentum in every cell in each step:

Multi-scattering

- Recently, we added dust absorption and scattering

$$\frac{\partial E_{\mathrm{IR}}}{\partial t} + \nabla \cdot \mathbf{F}_{\mathrm{IR}} = \kappa_{\mathrm{P}} \rho \left(caT^{4} - \tilde{c}E_{\mathrm{IR}} \right) + \dot{E}_{\mathrm{IR}}$$
$$\frac{\partial \mathbf{F}_{\mathrm{IR}}}{\partial t} + \tilde{c}^{2} \nabla \cdot \mathbb{P}_{\mathrm{IR}} = -\kappa_{\mathrm{R}} \rho \tilde{c} \mathbf{F}_{\mathrm{IR}}$$

- IR radiation pressure on dust may be important in galaxy evolution because of multi-scattering pressure boost

$$\dot{p}_{\rm rad} = \frac{L_{\rm Opt}}{c} \tau_{\rm IR}$$

- For implementation details, see Rosdahl & Teyssier 2015

Diffusion of radiation in optically thick gas

- The challenge is to model IR radiation in both the optically thin and thick limits
- The de-facto mean free path is $\lambda_{\text{eff}} = \max(\lambda, \Delta x)$

Diffusion of radiation in optically thick gas

We divide the IR photons into trapped and streaming components in each cell, with

$$f_{\rm trapped} = \exp\left(\frac{2}{3\tau_{\rm cell}}\right)$$

We then recover the correct diffusion limit when the mean free path is unresolved, i.e.

$$\mathbf{F}_{\mathrm{rad}} = -\frac{c\lambda}{3}\nabla E_{rad}$$

Radiative transfer is accurate both in the diffusion and freestreaming limits (but at a reduced light speed)

From Rosdahl & Teyssier, 2015

Diffusion of radiation in optically thick gas

We divide the IR photons into trapped and streaming components in each cell, with

$$f_{\rm trapped} = \exp\left(\frac{2}{3\tau_{\rm cell}}\right)$$

We then recover the correct diffusion limit when the mean free path is unresolved, i.e.

$$\mathbf{F}_{\mathrm{rad}} = -\frac{c\lambda}{3}\nabla E_{rad}$$

Radiative transfer is accurate both in the diffusion and freestreaming limits (but at a reduced light speed)

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

Validation tests for RamsesRT

Thermochemistry tests

- Convergence of temperature and ionization states
- Stability
- <u>Tests turn out ok</u>

Iliev et al's 'RT codes comparison project'

- Compare against other codes results **Pure RT:**
 - 1) Isothermal HII region expansion
 - 2) HII region expansion with cooling
 - 3) Shadow test

4) Ionizing a cosmological volume **RHD**:

- 5) HII D-type expansion
- 6) HII expansion in a r⁻² density profile
 7) Photo-evaporation of a dense clump
- <u>Comparisons good, except for 4</u>)

Validation tests for RamsesRT

- For complete descriptions, see
 - Rosdahl et al. 2013: Standard Iliev tests
 - Rosdahl & Teyssier 2015: Radiation pressure and diffusion
 - Bisbas et al. 2015: Starbench code comparison project

Iliev 2: HII region expansion

Iliev 4: Ionizing a cosmological volume

Overview

Challenges in numerical radiative transfer

Main features of RAMSES-RT

M1 moment radiative transfer

Reduced and variable speed of light

Coupling to AMR hydrodynamics

Radiation pressure and multi-scattering

Tests

Science with RAMSES-RT

Science with RAMSES-RT

Molecular clouds, sub-pc to pc scales

Gavagnin, Bleuler, Rosdahl, & Teyssier (2017) Kimm, Cen, Rosdahl, & Yi (2016) Geen, Hennebelle, Tremblin, & Rosdahl (2015, 2016) Geen, Rosdahl, Blaizot, Devriendt, & Slyz (2015) Geen, Soler, & Hennebelle (2017)

Galaxy-scale stellar feedback, pc to kpc scales

Butler, Tan, Teyssier, Rosdahl, van Loo, & Nickerson (2017) Rosdahl, Schaye, Teyssier, & Agertz (2015) Rosdahl & Teyssier (2015)

Feedback from active galactic nuclei, pc to kpc scales

Costa, Rosdahl, Sijacki, & Haehnelt (2017a,b) Roos, Bournaud, Renaud, Gabor, Dubois, Rosdahl, Perret, & Teyssier (2017) Bieri, Dubois, Rosdahl, Wagner, Silk, & Mamon (2016)

Properties of the circum-galactic medium, kpc to Mpc scales

Rosdahl & Blaizot (2012) Trebitsch, Verhamme, Blaizot, & Rosdahl (2016)

Reionisation and escape of ionising photons, pc to Mpc scales

Kimm & Cen (2014) Trebitsch, Blaizot, Rosdahl, Devriendt, & Slyz (2017) Kimm, Katz, Haehnelt, Rosdahl, Devriendt, & Slyz (2017) Katz, Kimm, Sijacki, Haehnelt (2017)

UV escape from galaxies during reionisation

Trebitsch, Blaizot, Rosdahl, Devriendt, & Slyz (2017)

Rosdahl et al. 2015

What is the role of stellar radiation feedback in galaxy evolution?

Results:

- Considerable effect in low-mass galaxies.
- Smoother gas distribution and reduced star formation.
- Photoionisation heating dominates over radiation pressure (optically thin disks).
- More coming soon for high-redshift ULIRGs

From Rosdahl et al. (2015)

Photoionisation feedback in a stellar nursery Geen et al., 2013, 2015, 2016, 2017 Gavagnin et al., 2017

Studies of the photo-evaporation of star-forming clouds with sub-pc resolution: SN momentum boost, SF regulation and effects on the new-born stellar cluster dynamics

Outflows driven by quasars via radiation pressure Bieri et al. 2016

How efficiently can multiscattering IR radiation generate AGN outflows?

$$\dot{p}_{\rm rad} = \frac{L_{\rm Opt}}{c} \tau_{\rm IR}$$
 ???

The radiation can push out fast winds, but the boost is much weaker than tau.

Outflows driven by quasars via radiation pressure Bieri et al. 2016

How efficiently can multiscattering IR radiation generate AGN outflows?

The radiation can push out fast winds, but the boost is much weaker than tau.

Future developments in Ramses-RT

- Speedup:
 - Implicit RT solver to get rid of reduced light speed?
 - Not clear if there is always an advantage...the system should preferrably be 'slowly' evolving
- Coupling radiation with metal cooling
- H₂ chemistry almost there
- Dust model, e.g. production, growth, destruction
 ...the physics is complex and not well known

Summary

What is RAMSES-RT?

- Publicly available RHD extension of RAMSES
- On-the-fly radiation emission, transport, and absorption of H, He, and dust, using the M1 moment method
- Photoionisation, radiation pressure and dust scattering, correct in free-streaming and diffusion limits

Why?

- To predict observable properties of gas
- To study radiation feedback on (sub-) galactic scales
- To study reionisation and escape fractions