Diagnostic radiative transfer in Astrophysics with RADMC-3D

C.P. Dullemond ZAH, Heidelberg University

Radiative Transfer:

Interpreting the observed light

Diagnostic radiative transfer

Observation

Model

20.5

21.0

c) $log(N_{H2}) (cm^{-2})$

21.5

22.0

22.5

Forward modeling

Diagnostic radiative transfer

Observation

Model

Diagnostic radiative transfer

Observation

Model

Diagnostic radiative transfer

Observation

Radiative transfer: Heating, cooling and energy transport

- Astrophysical objects cool by emitting radiation
- That same radiation is the radiation we observe with our telescopes
- Inside the object: Radiation can transport energy from one place to another
- Often linked to hydrodynamics: "Radiation hydrodynamics"

Radiative transfer: Driving photochemistry

- Energetic photons can:
 - photoionize atoms, molecules
 - photodissociate molecules
 - charge dust grains
- This powers a complex photochemical network

Photon-Dominated Regions (PDR)

Eagle Nebula

Example of object with PDRs where photochemistry and photoionization play a major role

In summary:

- Radiative transfer is BOTH about:
 - How radiation affects the object and
 - how we can interpret our observations
- In many cases these two are *linked*, so that we cannot interpret our observations without computing how the radiation affects the object.

This Lecture

- Emphasis:
 - ... on *diagnostic* radiative transfer

- We will discuss:
 - Physics of dust and line radiative processes
 - Equations of radiative transfer
 - Monte Carlo method for dust continuum RT
 - LTE and non-LTE line transfer
 - Hands-on experimentation with RADMC-3D

- Radiative processes:
 - Dust continuum:
 - Dust thermal emission, local radiative equilibrium
 - Scattering off dust particles, polarization
 - Dust opacities, Mie theory, DDA theory
 - Quantum-heated grains, Polycyclic Aromatic Hydrocarbons (PAHs)
 - Gas lines:
 - Atomic lines, recomb. lines, forbidden lines, incl. examples (H, O, O²⁺, Ne⁺, ...)
 - Molecular lines: rotational, rovibrational, incl. examples (H₂, CO, NH₃, H₂O, ...)

- Radiative processes (cont.):
 - Gas continuum:
 - Bound-free
 - Two-photon
 - Photoionization
 - Photodissociation of molecules
 - Thompson & Compton scattering

- Applications in Astrophysics:
 - Interstellar medium, molecular clouds, star formation
 - Protoplanetary disks
 - Stellar atmospheres
 - Planetary atmospheres
 - Hot gas around compact objects

• Visualization of 3-D model data

Literature:

- A standard book on radiative processes in astrophysics is: Rybicki & Lightman "Radiative Processes in Astrophysics" wiley-Interscience
- For radiative transfer in particular there are some excellent lecture notes on-line by Rob Rutten "Radiative transfer in stellar atmospheres" http://www.staff.science.uu.nl/~rutte101/
- For stellar atmospheres: pleasantly written book by Böhm-Vitense "Stellar Astrophysics Vol. 2: Stellar atmospheres"

Literature:

- In-depth reference work by Mihalas "Stellar atmospheres"
- Allround bible on radiation hydrodynamics by Mihalas & Mihalas "Radiation Hydrodynamics"
- Book on Exoplanetary atmospheres by Seager "Exoplanet Atmospheres"
- Book on radiative transfer in Earth's atmosphere (application to e.g. climate research): Wendisch & Yang "Theory of Atmospheric Radiative Transfer"

Literature:

• My own set of lecture notes: http://www.ita.uni-heidelberg.de/~dullemond/teaching.shtml