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MagIC uses a mixed implicit/explicit time stepping scheme
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Spectral poloidal dynamo equation

Equation for each spherical harmonic degree and order
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Spectral poloidal dynamo equation

Equation for each spherical harmonic degree and order
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How to deal with the time integration, i.e. discretisation in time?
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Strategy

m Strong non linearities = stiff problem. Usually, higher-order schemes (RK4), or
multi-step algorithms are employed (BDF).
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Strategy

m Strong non linearities = stiff problem. Usually, higher-order schemes (RK4), or
multi-step algorithms are employed (BDF).

m BUT Courant condition gives:
dr? .
ot< C— — Small time steps!
14

m Implicit schemes offer increased stability and allow larger timesteps

m BUT fully implicit schemes couple all spherical harmonic modes — huge memory
imprint

Adopted strategy

Most authors adopt a mixed implicit/explicit algorithm
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Semi-implicit scheme

Generic evolution equation with terms Z(x, t) to be treated implicitly and £(x, t) to

be treated explicitly:

Ox
¢ +Z(x, t) = E(x, t)
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Semi-implicit scheme

Generic evolution equation with terms Z(x, t) to be treated implicitly and £(x, t) to

be treated explicitly:
ox

ot
Glatzmaier's (1984) time integration scheme (2nd order): Implicit Crank-Nicolson

scheme:
x(t+ot) — x(t)
ot

+Z(x, t) = E(x, t)

> = —aZ(x,t46t)— (1 a)I(xt)
T

Explicit 2nd order Adams-Bashforth scheme:

<x(t+ 5(2 _ X(t)>g _ gg(x7 £ - %S(x, t— 6t)

N.B. Other schemes are used in some pseudo-spectral codes: BDF/AB or predictor-corrector
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Time stepping scheme

x(t+0t)

_ x(1)
s+ aZ(x,t+6t)= "> —(1—a)I(x,t)

ot

4 gs(x, £ - %5(x, £ 5t)

m When a = 0.5, this is pure CN/AB2 implicit/explicit 2nd order scheme

m Glatzmaier (1984) reported an improved stability when a = 0.6 (see MagIC's input
namelist)
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Treatment of Coriolis force

As an example, Coriolis force that enters the W equation:

2 (0*W V4
2per - (uxe;)=2sinf juy = - (gr—{?qﬁ - sinﬁz—e)
This yields:
2
Cor?}, = 7 [Im C; VVZIZ — (K — l)Cngn Zénll’n + (E + 2)Cﬂ_lcn ZZn—;l-l,n]
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Treatment of Coriolis force

As an example, Coriolis force that enters the W equation:

2
2per - (uxe,)=2sinf puy = % (grgl; _singaag)

This yields:

Corpy = = [imCy, Wy — (£ — 1)¢/"Ch Z" 10+ (04 2)ci14Chn Zz’il’n]

Implicit treatment?

m (¢, m) mode coupled with (¢ +1,m) and (¢ — 1, m) modes

m Poloidal and toroidal equations coupled

SN

m Implicit treatment of Coriolis force = much larger matrix

m In MaglC, Coriolis force is treated explicitly...
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Poloidal magnetic field time stepping

Again equation for poloidal magnetic field:
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Poloidal magnetic field time stepping

Again equation for poloidal magnetic field:

We+1) [0 1 et+1) 1] m om
2 [(aﬁpm 2 )G | Ein =N

Using the CN/AB2 scheme yields the following linear problem

[Akn + @ Gn] g7n(t + 1) = [Akn — (1 — @) Gkn] g7 (1)

3 1
+ 5 Dkn(t) - E Dkn(t - 5t)

with
W+1) 1 [ee+1)
A n — ' n —
k r? ot G rZ Pm r?

Co(r) = Co ()] ;
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Some comments on the time-stepping

m Co(rk), Ch(rk), C!(ri) are full matrices: costly LU factorisations required (O(N?))
and possibly large memory imprints

m BUT as long as dt does not change, the left hand-side operator does not change

m Finite differences in radius yield sparse matrices: less memory, faster solve (at
the price of reduced accuracy though)...
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Courant condition

m Explicit treatment of Coriolis force: §t < 0.1 E
m Jt should be smaller than the advection between two grid points:

1/2
5ty < min [ or ] dty < min r
< min |—1; < mi
|uf| & gmax(gmax + 1)(U5 + Ué)

Hence
ot = C min(dt,, 0ty)

m In presence of a magnetic field, another condition on the Alvén velocity is
required
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Time integration: summary

Take-away messages on time stepping

m Most of the pseudo-spectral codes assume a mixed implicit/explicit scheme (most
of the time 2nd order)

m At each time step a linear system needs to be solved

m For Chebyshev-based code: LU factorisations — O(¢2,,, N?) (matrix can be saved

max
as long as 0t does not change though)

m Finite difference are cheaper here: sparse matrix, less memory, faster inversion


https://magic-sph.github.io/numerics.html#time-stepping-schemes
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MaglC structure
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Parallelisation strategy



The code relies on a hybrid parallelisation scheme (MP1/OpenMP)
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Hybrid configuration used in MaglC

MPI:

m 1st part of the code: calculation of the nonlinear terms and SH transforms = radial levels can
be treated independently: r is distributed over N, MPI ranks

m 2nd part of the code: time advance of the equations = linear solve = all the (¢, m) modes can
be treated independently: (¢, m) is distributed over N, MPI ranks (pairing needed to ensure the
load balancing

m In between: costly mpi_all_to_all(...) calls are required. For large truncations, this becomes
a bottleneck...

OpenMP:

m 1st part of the code: N; OpenMP threads can be used over the 6 blocks for the SH transforms
and computation of nonlinear terms

m 1st part of the code: N; OpenMP tasks are used over (¢, m)
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MaglC structure

bring fields on grid
calculate horizontal derivatives

transform from specral to grid

tialisation

ini

grid outputs

non-linear terms
calculated on grid

needed for explicit time step M P I °r
twansform from grid to spectral .

calculate horizontal derivatives
time step ¢ =t+dt

update x, ,=x(t,;,)
LU factorisation, radial derivatives

spectral outputs
spectral output? 'spectra, energies, checkpoint,
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Possible improvements: 2D-MPI configuration

Spectrum data
for time integration

Communication

Legendre
Grid space data transform

for nonlinear terms

ommunication

"
) T

Taken from Calypso's documentation


https://github.com/geodynamics/calypso
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Resolution check
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How do | know a simulation is under-resolved? (1/2)

m Look at the solutions! Usually: flows and magnetic field close to the surfaces are
usually prone to under-resolution (boundary layers)

E=3x%x10"% Ra =3 x 10

m Obvious signatures of under-resolution: small-scale structures of comparable
size than the grid, “eyes”, aliases (sudden localized changes of polarities)
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How do | know a simulation is under-resolved? (2/2)

m Look at spectra and check the dissipation:

10° T 10°
poloidal
toroidal

Kinetic energy
Magnetic Energy
5

| 2 |
10° 10" 10° 10"
Degree | Degree |

m Rule of thumb: 2 orders of magnitude between the injection scale and the dis-
sipation scale
m Additional diagnostics of under-resolution: heat flux conservation, power budget
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Possible impacts of under-resolution (1/2)

m Under-resolution might be an issue: it really depends what you are looking at...
m Let's take another example of under-resolution
U, 7= 0.98 7, B,., r=0.98r

o

Yadav et al., ApJ (2015)

N, =100, Ng = 320, Ny = 640

m A lot of localised “eyes”
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Possible impacts of under-resolution (1/2)

m Under-resolution might be an issue: it really depends what you are looking at...

m Let's take another example of under-resolution
ur, 7= 0.987,

Yadav et al., ApJ (2015)

N, =160, Ny = 1024, N, = 2048
m A lot of localised “eyes”

m Solution: multiply the angular resolution by 3
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Possible impacts of under-resolution (2/2)

Bulk spectrum

10 ‘ 10 : Surface spectrum‘

10° E

Magnetic energy
Magnetic energy
g
T
|

-
A

10
10°

Degree Degree

m At first glance, you would better trash the under-resolved case
m But, the largest scales contributions are reasonably captured
m Surprisingly, some global quantities might still be OK!
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Is it that bad?

Parameter  Under-resolved Resolved

Volume-averaged quantities

Rm 1000 1000
A 16 16
Surface-averaged quantities
ANr=r,) 53 34
Nu(r =r,) 1.55 1.3
Nu(r = r;) 1.3 1.3

m Global volume-integrated quantities are still good!
m But surface-averaged and local quantities are completely wrong

m Be careful with what you are doing!
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How much does it cost?

10243-class simulation: 107 CPU hours Schaeffer et al. (2017)
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Summary: little recipes for MaglC

Good resolution: no localised “eyes” or aliases clean spectra

Bad resolution: aliasing, pile-up of energy, no proper dissipation

At some point the simulation will crash (hopefully)...

But some compromises are possible: slightly under-resolved cases can still provide
good volume-integrated quantities (numerically cheap)

Be careful though: local properties (heat transfer, scaling laws) are likely wrong

[@ Don’t over-do it! Large resolution are computationally expensive

Why not running first a smaller and cheaper truncation for transients and
possibly refining the grid later on?
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Science with MaglC



Science with MaglC
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List of publications

To date, around 90 publications in more than 10 different peer-reviewed journals have
been produced using MaglC:

10
III I |
Il II III -

2002 2004 2006 2008 2010 2012 2014 2016

Papers
) @

=

o

Source ADS Bumblebee


https://ui.adsabs.harvard.edu
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International dynamo benchmark
Christensen et al., PEPI, 2001

m Earth-like setup

m Boussinesq

m ri/r,=0.35

m Weakly-supercritical laminar
dynamo

m Code validation
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Modelling the Jovian zonal jets
Heimpel et al., Nature, 2005

m Jupiter-like zonal jets in a thin
convective shell

Boussinesq
Non-magnetic
Stress-free boundaries
ri/ro=0.9

low E, large Ra
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Formation of anti-cyclonic eddies
Heimpel et al., Nat. Geo., 2015
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Explaining chaos terrain on Europa
Soderlund et al., Nat. Geo., 2014

Europa’s ocean

Thin convective shell
Boussinesq
Non-magnetic

large Ra

stronger equatorial heat flux
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Explaining inner core anisotropy
Aubert et al., Nature, 2008

m Geodynamo simulation
m Boussinesq

m Tomographic CMB heat flux
pattern

m Inner core anisotropy
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Explaining the Martian crustal field anisotropy
Dietrich & Wicht, PEPI, 2013

m Increased southern heat flux
m Boussinesq
m Anistropic flow and field
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Inertial modes in spherical Couette flows
Wicht, JFM, 2014

Spherical Couette
Boussinesq

Non-magnetic

Comparison with Mary-
land’s experiment
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Rayleigh-Bénard convection in spherical shells
Gastine et al., JFM, 2015

Non-rotating
Boussinesq
Non-magnetic
high Ra
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Explaining Saturn’s peculiar magnetic field
Cao et al., lcarus, 2012

Slightly supercritical spherical Taylor-Couette dynamo
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Jupiter hosts two dynamos?
Gastine et al., GRL, 2014

m Jovian-like reference state
m Anelastic

m Magnetic

m low E high Ra
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Formation of polar spots on rapidly-rotating cool stars
Yadav et al., ApJ, 2015

m fully convective M dwarf
m Anelastic
m Magnetic

m Large density contrast
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MRI in radiative zones of A-type stars
Jouve et al., A&A, 2015

m Incompressible fluid

m Magnetic instabilities
(MRI & Tayler)

m Here MRI
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Magnetic cycles on Proxima Centauri?
Yadav et al., ApJ, 2016

Fully convective, anelastic, rapidly-rotating dynamo (M dwarf)

Radial magnetic field
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What is coming next?

(4.

It is up to you now!
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