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� MagIC simulates rotating fluid dynamics in a spherical shell

� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
perature (or entropy) equation and an equation for chemical composition under
both the anelastic and the Boussinesq approximations

� A dimensionless formulation of the equations is assumed

� MagIC is a free software (GPL), written in Fortran

� Post-processing relies on python libraries

� Poloidal/toroidal decomposition is employed

� MagIC uses spherical harmonic decomposition in the angular directions

� Chebyshev polynomials or finite differences are employed in the radial direction

� MagIC uses a mixed implicit/explicit time stepping scheme

� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)
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Spectral poloidal dynamo equation

Equation for each spherical harmonic degree and order
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How to deal with the time integration, i.e. discretisation in time?
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Strategy

Strong non linearities = stiff problem. Usually, higher-order schemes (RK4), or
multi-step algorithms are employed (BDF).

BUT Courant condition gives:

δt < C
dr2

ν
→ Small time steps!

Implicit schemes offer increased stability and allow larger timesteps

BUT fully implicit schemes couple all spherical harmonic modes→ huge memory
imprint

Adopted strategy

Most authors adopt a mixed implicit/explicit algorithm
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Semi-implicit scheme

Generic evolution equation with terms I(x , t) to be treated implicitly and E(x , t) to
be treated explicitly:

∂x

∂t
+ I(x , t) = E(x , t)

Glatzmaier’s (1984) time integration scheme (2nd order): Implicit Crank-Nicolson
scheme: (

x(t + δt)− x(t)

δt

)
I

= −α I(x , t + δt)− (1− α) I(x , t)

Explicit 2nd order Adams-Bashforth scheme:(
x(t + δt)− x(t)

δt

)
E

=
3

2
E(x , t)− 1

2
E(x , t − δt)

N.B. Other schemes are used in some pseudo-spectral codes: BDF/AB or predictor-corrector
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Time stepping scheme

x(t + δt)

δt
+ α I(x , t + δt) =

x(t)

δt
− (1− α) I(x , t)

+
3

2
E(x , t)− 1

2
E(x , t − δt)

When α = 0.5, this is pure CN/AB2 implicit/explicit 2nd order scheme

Glatzmaier (1984) reported an improved stability when α = 0.6 (see MagIC’s input
namelist)
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Treatment of Coriolis force

As an example, Coriolis force that enters the W equation:

2ρ̃ er · (u× ez) = 2 sin θ ρ̃uφ =
2

r

(
∂2W

∂r∂φ
− sin θ

∂Z

∂θ

)
This yields:

Corm`n =
2

r

[
im C′n Wm

`n − (`− 1)cm` Cn Zm
`−1,n + (`+ 2)cm`+1Cn Zm

`+1,n

]

Implicit treatment?

(`,m) mode coupled with (`+ 1,m) and (`− 1,m) modes

Poloidal and toroidal equations coupled

Implicit treatment of Coriolis force = much larger matrix

In MagIC, Coriolis force is treated explicitly...
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Poloidal magnetic field time stepping

Again equation for poloidal magnetic field:
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Using the CN/AB2 scheme yields the following linear problem
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Some comments on the time-stepping

Cn(rk), C′n(rk), C′′n (rk) are full matrices: costly LU factorisations required (O(N2
r ))

and possibly large memory imprints

BUT as long as δt does not change, the left hand-side operator does not change

Finite differences in radius yield sparse matrices: less memory, faster solve (at
the price of reduced accuracy though)...
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Courant condition

Explicit treatment of Coriolis force: δt ≤ 0.1E

δt should be smaller than the advection between two grid points:

δtr ≤ min

[
δr

|ur |

]
; δtH ≤ min

( r2

`max(`max + 1)(u2
θ + u2

φ)

)1/2


Hence
δt = C min(δtr , δtH)

In presence of a magnetic field, another condition on the Alvén velocity is
required
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Time integration: summary

Take-away messages on time stepping

Most of the pseudo-spectral codes assume a mixed implicit/explicit scheme (most
of the time 2nd order)

At each time step a linear system needs to be solved

For Chebyshev-based code: LU factorisations→ O(`2
maxN

2
r ) (matrix can be saved

as long as δt does not change though)

Finite difference are cheaper here: sparse matrix, less memory, faster inversion

Documentation

https://magic-sph.github.io/numerics.html#time-stepping-schemes
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MagIC structure
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Hybrid configuration used in MagIC

MPI:

1st part of the code: calculation of the nonlinear terms and SH transforms = radial levels can
be treated independently: r is distributed over Np MPI ranks

2nd part of the code: time advance of the equations = linear solve = all the (`,m) modes can
be treated independently: (`,m) is distributed over Np MPI ranks (pairing needed to ensure the
load balancing

In between: costly mpi_all_to_all(...) calls are required. For large truncations, this becomes
a bottleneck...

OpenMP:

1st part of the code: Nt OpenMP threads can be used over the θ blocks for the SH transforms
and computation of nonlinear terms

1st part of the code: Nt OpenMP tasks are used over (`,m)
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MagIC structure
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Possible improvements: 2D-MPI configuration

Taken from Calypso’s documentation

https://github.com/geodynamics/calypso
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How do I know a simulation is under-resolved? (1/2)

Look at the solutions! Usually: flows and magnetic field close to the surfaces are
usually prone to under-resolution (boundary layers)

ur, r = 0.99 ro Br, r = 0.99 ro

E = 3× 10−4, Ra = 3× 106

Obvious signatures of under-resolution: small-scale structures of comparable
size than the grid, “eyes”, aliases (sudden localized changes of polarities)
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How do I know a simulation is under-resolved? (2/2)

Look at spectra and check the dissipation:
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Rule of thumb: 2 orders of magnitude between the injection scale and the dis-
sipation scale

Additional diagnostics of under-resolution: heat flux conservation, power budget
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Possible impacts of under-resolution (1/2)

Under-resolution might be an issue: it really depends what you are looking at...

Let’s take another example of under-resolution

Nr = 100, Nθ = 320, Nφ = 640

ur, r = 0.98 ro Br, r = 0.98 ro

Y
a
d
a
v

e
t
a
l.
,
A
p
J

(
2
0
1
5
)

A lot of localised “eyes”

Solution: multiply the angular resolution by 3
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Possible impacts of under-resolution (1/2)

Under-resolution might be an issue: it really depends what you are looking at...

Let’s take another example of under-resolution
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Possible impacts of under-resolution (2/2)
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At first glance, you would better trash the under-resolved case

But, the largest scales contributions are reasonably captured

Surprisingly, some global quantities might still be OK!
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Is it that bad?

Parameter Under-resolved Resolved

Volume-averaged quantities
Rm 1000 1000
Λ 16 16

Surface-averaged quantities
Λ(r = ro) 53 34

Nu(r = ro) 1.55 1.3
Nu(r = ri ) 1.3 1.3

Results

Global volume-integrated quantities are still good!

But surface-averaged and local quantities are completely wrong

Be careful with what you are doing!
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How much does it cost?

10243-class simulation: 107 CPU hours Schaeffer et al. (2017)
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Summary: little recipes for MagIC

1 Good resolution: no localised “eyes” or aliases clean spectra

2 Bad resolution: aliasing, pile-up of energy, no proper dissipation

3 At some point the simulation will crash (hopefully)...

4 But some compromises are possible: slightly under-resolved cases can still provide
good volume-integrated quantities (numerically cheap)

5 Be careful though: local properties (heat transfer, scaling laws) are likely wrong

6 Don’t over-do it! Large resolution are computationally expensive

7 Why not running first a smaller and cheaper truncation for transients and
possibly refining the grid later on?
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List of publications

To date, around 90 publications in more than 10 different peer-reviewed journals have
been produced using MagIC:

Source ADS Bumblebee

https://ui.adsabs.harvard.edu
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International dynamo benchmark
Christensen et al., PEPI, 2001

Earth-like setup

Boussinesq

ri/ro=0.35

Weakly-supercritical laminar
dynamo

Code validation
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Modelling the Jovian zonal jets
Heimpel et al., Nature, 2005

Jupiter-like zonal jets in a thin
convective shell

Boussinesq

Non-magnetic

Stress-free boundaries

ri/ro=0.9

low E , large Ra
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Formation of anti-cyclonic eddies
Heimpel et al., Nat. Geo., 2015

Anelastic, non-magnetic model with a stably-stratified atmosphere.
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Explaining chaos terrain on Europa
Soderlund et al., Nat. Geo., 2014

Europa’s ocean

Thin convective shell

Boussinesq

Non-magnetic

large Ra

stronger equatorial heat flux
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Explaining inner core anisotropy
Aubert et al., Nature, 2008

Geodynamo simulation

Boussinesq

Tomographic CMB heat flux
pattern

Inner core anisotropy
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Explaining the Martian crustal field anisotropy
Dietrich & Wicht, PEPI, 2013

Increased southern heat flux

Boussinesq

Anistropic flow and field
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Inertial modes in spherical Couette flows
Wicht, JFM, 2014

Spherical Couette

Boussinesq

Non-magnetic

Comparison with Mary-
land’s experiment



Time integration Parallelisation strategy Resolution check Science with MagIC Bibliography

Rayleigh-Bénard convection in spherical shells
Gastine et al., JFM, 2015

Non-rotating

Boussinesq

Non-magnetic

high Ra
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Explaining Saturn’s peculiar magnetic field
Cao et al., Icarus, 2012

Slightly supercritical spherical Taylor-Couette dynamo
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Jupiter hosts two dynamos?
Gastine et al., GRL, 2014

Jovian-like reference state

Anelastic

Magnetic

low E high Ra
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Formation of polar spots on rapidly-rotating cool stars
Yadav et al., ApJ, 2015

fully convective M dwarf

Anelastic

Magnetic

Large density contrast
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MRI in radiative zones of A-type stars
Jouve et al., A&A, 2015

Incompressible fluid

Magnetic instabilities
(MRI & Tayler)

Here MRI
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Magnetic cycles on Proxima Centauri?
Yadav et al., ApJ, 2016

Fully convective, anelastic, rapidly-rotating dynamo (M dwarf)



Time integration Parallelisation strategy Resolution check Science with MagIC Bibliography

What is coming next?

?!
It is up to you now!
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