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� MagIC simulates rotating fluid dynamics in a spherical shell

� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
perature (or entropy) equation and an equation for chemical composition under
both the anelastic and the Boussinesq approximations

� A dimensionless formulation of the equations is assumed

� MagIC is a free software (GPL), written in Fortran

� Post-processing relies on python libraries

� Poloidal/toroidal decomposition is employed

� MagIC uses spherical harmonic decomposition in the angular directions

� Chebyshev polynomials or finite differences are employed in the radial direction

� MagIC uses a mixed implicit/explicit time stepping scheme

� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)
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Poloidal-toroidal decomposition of solenoidal vectors

General characterisation for solenoidal vector fields:

∇ · v = 0 ⇔ v = P + T

v = ∇×∇× (W er) + ∇× (Z er)

W is the poloidal potential and Z is the toroidal potential (e.g. Chandrasekhar
1961). The radial component of the vector v is purely poloidal.

Poloidal/Toroidal decomposition

Three unknown field components of a solenoidal vector can be replaced by two scalar
fields.
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Dimensionless Boussinesq MHD equations
From 9 equations for 8 unknowns...

∇ · u = 0

∇ · B = 0

∂u

∂t
+ u ·∇u +

2

E
ez × u = −∇p′ +

Ra

Pr
g(r)T ′er +

1

E Pm
(∇× B)× B + ∆u

∂B

∂t
= ∇× (u× B) +

1

Pm
∆B

∂T ′

∂t
+ u ·∇T ′ =

1

Pr
∆T ′

9 equations, 8 unknowns...
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Dimensionless Boussinesq MHD equations
To 6 equations for 6 unknowns...

1 Introduce Pol/Tor decomposition for ρ̃u and B:

ρ̃u = ∇×∇× (W er) + ∇× (Z er)

B = ∇×∇× (g er) + ∇× (h er)

2 6 unknowns: W ,Z , g , h, p′ and T ′

3 Establish poloidal and toroidal Navier-Stokes equations, poloidal and toroidal in-
duction equations, an equation for pressure and heat equation.
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Poloidal/Toroidal equations (1/3)

Operators

From vectorial to toroidal and poloidal equations via operators:

er · [ρ̃u] = −∆HW ,

er · [∇× ρ̃u] = −∆HZ ,

where ∆H denotes the horizontal part of the Laplacian:

∆H = ∆− 1

r2
∂

∂r

(
r2
∂

∂r

)
=

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin θ

∂2

∂2φ

N.B. vectors can be expanded as follows:

ρ̃ur = −∆HW ; ρ̃uθ =
1

r

∂2W

∂r∂θ
+

1

r sin θ

∂Z

∂φ
; ρ̃uφ =

1

r sin θ

∂2W

∂r∂φ
− 1

r

∂Z

∂θ
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Poloidal/Toroidal equations (2/3)

Poloidal potential: take er · [· · · ] of the NS equation:

er · ρ̃
∂u

∂t
=

∂

∂t
(er · ρ̃u) = −∆H

∂W

∂t

Toroidal potential: take er ·∇× [· · · ] of the NS equation:

er ·∇×
(
∂ρ̃u

∂t

)
=

∂

∂t
(er ·∇× ρ̃u) = −∆H

∂Z

∂t

Pressure: take ∇H · [· · · ] of the NS equation:

∇H ·
(
ρ̃
∂u

∂t

)
= ∆H

∂

∂t

(
∂W

∂r

)
N.B. Some spherical shell codes get rid of pressure by instead taking er ·∇×∇× [· · · ] to derive the equation

for the toroidal potential
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Poloidal/Toroidal equations (3/3)

One has to proceed the same way for each linear term! As an example: Coriolis force
that enters the toroidal potential equation:

er ·∇× [2ρ̃u× ez] = 2 er · [(ez ·∇)(ρ̃u)]

= 2

[
cos θ

∂(ρ̃ur )

∂r
− sin θ

r

∂(ρ̃ur )

∂θ
+
ρ̃uθ sin θ

r

]
= 2

[
− cos θ

∂

∂r
(∆HW )+

sin θ

r

∂

∂θ
(∆HW ) +

sin θ

r2
∂2W

∂r∂θ
+

1

r2
∂Z

∂φ

]
...
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� MagIC simulates rotating fluid dynamics in a spherical shell

� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
perature (or entropy) equation and an equation for chemical composition under
both the anelastic and the Boussinesq approximations

� A dimensionless formulation of the equations is assumed

� MagIC is a free software (GPL), written in Fortran

� Post-processing relies on python libraries

� Poloidal/toroidal decomposition is employed

� MagIC uses spherical harmonic decomposition in the angular direc-
tions

� Chebyshev polynomials or finite differences are employed in the radial direction

� MagIC uses a mixed implicit/explicit time stepping scheme

� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)
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Spherical harmonic functions

Spherical harmonic functions Y m
` are a natural choice for the horizontal expansion

in colatitude θ and longitude φ

Y m
` (θ, φ) = Pm

` (cos θ) e imφ

Degree ` and order m

In MagIC, we adopt a complete normalisation of SH:∫ 2π

0

∫ π

0
Y m
` (θ, φ) Y m′

`′
∗
(θ, φ) sin θ dθ dφ = δ``′δ

mm′

This yields:

Y m
` (θ, φ) =

(
(2`+ 1)

4π

(`− |m|)!

(`+ |m|)!

)1/2

Pm
` (cos θ) e imφ



Poloidal-toroidal decomposition Spherical harmonic representation Radial representation Spectral equations

First few spherical harmonics

`=0

`=1

`=2

`=3

`=4

m=0 m=1 m=2 m=3 m=4
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Some mathematical properties of the spherical harmonics

Complete and orthogonal eigenfunctions of ∆H :

∆HY m
` = −`(`+ 1)

r2
Y m
` .

Some useful recursion relations:

cos θY m
` = cm

`+1Y m
`+1 + cm

` Y m
`−1

sin θ
∂Y m

`

∂θ
= ` cm

`+1Y m
`+1 − (`+ 1)cm

` Y m
`−1

with c`m =

[
(`+ m)(`−m)

(2`+ 1)(2`− 1)

]1/2
Practically this is how θ and φ derivatives are computed in MagIC
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From spatial to spectral space (1/4)

Inverse spherical harmonic transform

(r , θ, φ) → (r , `,m)

Suppose we have Z (r , θ, φ, t) on a longitude/latitude representation (Nθ,Nφ). The
expansion of the horizontal structure in series of spherical harmonics yields:

Z (r , θ, φ, t) =
`max∑
`=0

∑̀
m=−`

Zm
` (r , t) Y m

` (θ, φ)

Spherical harmonic representation truncated at degree and order `max.
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From spatial to spectral space (2/4)

Inverse spherical harmonic transform

(r , θ, φ) → (r , `,m)

One has

Zm
` (r , t) =

1

π

∫ π

0
Zm(r , θ, t) Pm

` (cos θ) sin θ dθ

with

Zm(r , θ, t) =
1

2π

∫ 2π

0
Z (r , θ, φ, t)e−imφdφ

How do we compute those transformations?
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From spatial to spectral space (2/4)

Inverse spherical harmonic transform

(r , θ, φ) → (r , `,m)

One has

Zm
` (r , t) =

1

π

∫ π

0
Zm(r , θ, t) Pm

` (cos θ) sin θ dθ

with

Zm(r , θ, t) =
1

2π

∫ 2π

0
Z (r , θ, φ, t)e−imφdφ

How do we compute those transformations?
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From spatial to spectral space (3/4)

Inverse spherical harmonic transform

(r , θ, φ) → (r , `,m)

First, we compute an inverse FFT:

Zm(r , θ, t) =
1

2π

∫ 2π

0
Z (r , θ, φ, t)e−imφdφ

=
1

Nφ

Nφ−1∑
j=0

Z (r , θ, φj , t)e−imφj with φj =
2jπ

Nφ

→ φj needs to be evenly spaced. Nφ must be “FFT-friendly” (restrictions in
MagIC).
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From spatial to spectral space (4/4)

Inverse spherical harmonic transform

(r , θ, φ) → (r , `,m)

Second, we compute an inverse Legendre transform

Zm
` (r , t) =

1

π

∫ π

0
Zm(r , θ, t) Pm

` (cos θ) sin θ dθ

=
1

Nθ

Nθ−1∑
k=0

wk Zm(r , θk , t) Pm
` (cos θk)

Gaussian quadrature points and Gauss-Legendre weights yield:

θk given by P0
Nθ

(cos θk) = 0 and wk =
2

(Nθ + 1)2

(
sin θk

P0
Nθ+1(cos θk)

)2



Poloidal-toroidal decomposition Spherical harmonic representation Radial representation Spectral equations

From spectral to spatial space

Inverse spherical harmonic transform

(r , `,m) → (r , θ, φ)

Simply the opposite procedure

1 Fourier transform: (r , `,m) → (r , `, φ)

2 Legendre transform: (r , `, φ) → (r , θ, φ)
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A bit more on Legendre transforms...

No fast Legendre transform available: O(N2
θ ) for one transform!

(r , θ, φ) → (r , `,m) =⇒ O(NrNφN2
θ )

But “savings”: Y m
` symmetries (only half of the colatitudes required), polar optim-

isations, ...

SHTns is a high-performance library for SH transforms (https://bitbucket.
org/nschaeff/shtns). It can be used in MagIC and provide a significant speed-
up for large truncations.

Triangular truncation provides a balanced spatial resolution over the spherical
surface → Nφ = 2Nθ

https://bitbucket.org/nschaeff/shtns
https://bitbucket.org/nschaeff/shtns
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Avoid aliasing problems

Integration of quadratic terms on a discrete grid yields:

uv =
K∑

p=−K
ap e ipx

K∑
q=−K

aq e iqx

=
2K∑

k=−2K
bk e ikx

Alias-free SH transform

Orszag’s (1971) 2/3 dealiasing rule: “to obtain an alias-free computation on a grid
of N points for a quadratically nonlinear equation, filter the high wavenumbers so as to
retain only (2/3)N unfiltered wavenumbers.” (Boyd 2001)

Nθ ≥
3`max + 1

2
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Avoid aliasing problems

Integration of quadratic terms on a discrete grid yields:

uv =
K∑

p=−K
ap e ipx

K∑
q=−K

aq e iqx

=
2K∑

k=−2K
bk e ikx

Alias-free SH transform

Orszag’s (1971) 2/3 dealiasing rule: “to obtain an alias-free computation on a grid
of N points for a quadratically nonlinear equation, filter the high wavenumbers so as to
retain only (2/3)N unfiltered wavenumbers.” (Boyd 2001)

Nθ ≥
3`max + 1

2
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Spherical harmonic transforms: summary

Take-away messages on SH transforms

Spectral to spatial (r , `,m)→ (r , θ, φ): Fourier and Legendre transforms

Spatial to spectral (r , θ, φ)→ (r , `,m): inverse Fourier and Legendre transforms

FFT: O(NrNθNφ log(Nφ))

Legendre transform represents the most important part of the spherical harmonic
transform: O(NrNφN2

θ)

FFT: prime decomposition of Nφ should only contain multiple of 2, 3 and 5 (for
built-in FFT)

Alias-free SH transforms require: Nθ ≥
3`max + 1

2

Documentation

https://magic-sph.github.io/numerics.html#spherical-harmonic-representation
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MagIC structure
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� MagIC simulates rotating fluid dynamics in a spherical shell

� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
perature (or entropy) equation and an equation for chemical composition under
both the anelastic and the Boussinesq approximations

� A dimensionless formulation of the equations is assumed

� MagIC is a free software (GPL), written in Fortran

� Post-processing relies on python libraries

� Poloidal/toroidal decomposition is employed

� MagIC uses spherical harmonic decomposition in the angular directions

� Chebyshev polynomials or finite differences are employed in the radial
direction

� MagIC uses a mixed implicit/explicit time stepping scheme

� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)
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Radial representation in spherical shell codes

Different approaches have been employed to represent the radial variation of the
unknowns:

calypso, Parody, xshells, ... : finite differences (usually 2nd order)

ASH, Rayleigh, ... : expansion in Chebyshev polynomials.

MagIC: since version 5.6: both FD and Chebyshev polynomials are supported.

Special focus on spectral method here...

https://github.com/geodynamics/calypso
https://bitbucket.org/nschaeff/xshells
https://github.com/magic-sph/magic
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Some mathematical properties of Chebyshev polynomials

The Chebyshev polynomial of degree n is defined by:

Cn(x) = cos[n arccos(x)], −1 < x < 1

Recursion relation:
Cn+1(x) = 2 x Cn(x)− Cn−1(x)

Derivatives
dCn+1

dx
= 2 Cn + 2 x

dCn
dx
− dCn−1

dx
d2Cn+1

dx2
= 4

dCn
dx

+ 2 x
d2Cn
dx2

− d2Cn−1
dx2
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First Chebyshev polynomials

−1.0 −0.5 0.0 0.5 1.0

x

−1.0

−0.5

0.0

0.5

1.0

C n
(x

)

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
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Gauss-Lobatto grid points (suitable for boundary layers and “FFT-friendly”):

xk = cos

(
kπ

N

)
, k = 0, 2, · · · ,N

−1.0 −0.5 0.0 0.5 1.0

This yields

Cn(xk) = cos

(
n k π

N

)
The Gauss-Lobatto grid points are linearly mapped on a [ri , ro ] grid:

rk = ri +
ro − ri

2

(
1 + cos

[
kπ

N

])
N.B Additional nonlinear mappings can be used to modify the grid-point density
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Radial representation (1/2)

Truncating the radial expansion of the toroidal flow potential at degree N reads:

Zm
` (rk , t) =

N∑
n=0

Zm
`n(t) Cn(rk)

with

Zm
`n(t) =

2− δn0 − δnN
π

∫ 1

−1

Zm
` (r(x), t) Cn(x) dx√

1− x2

At this stage, we make use of the Gaussian quadrature rule:∫ 1

−1
f (x)w(x) dx =

N∑
n=0

wn f (xn)
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Radial representation (1/2)

Truncating the radial expansion of the toroidal flow potential at degree N reads:

Zm
` (rk , t) =

N∑
n=0

Zm
`n(t) Cn(rk)

with

Zm
`n(t) =

2− δn0 − δnN
π

∫ 1

−1

Zm
` (r(x), t) Cn(x) dx√

1− x2

At this stage, we make use of the Gaussian quadrature rule:∫ 1

−1
f (x)w(x) dx =

N∑
n=0

wn f (xn)
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Radial representation (2/2)

Using the Gauss-Lobatto grid with xn = cos(nπ/N) gives (e.g. Abramowitz & Stegun)

wj =


π

N
i = 1, 2, · · · ,N − 1

π

2N
i = 0,N

This finally yields

From real to Chebyshev space

Zm
`n(t) =

1

2N

[
Zm
` (r0, t) + Zm

` (rN , t) + 2
N−1∑
n=1

Zm
` (rn, t) cos

(
n k π

N

)]
This is a fast discrete cosine transform: this forces us to use some “FFT-friendly”

number of radial grid points.
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Radial representation (2/2)

Using the Gauss-Lobatto grid with xn = cos(nπ/N) gives (e.g. Abramowitz & Stegun)

wj =


π

N
i = 1, 2, · · · ,N − 1

π

2N
i = 0,N

This finally yields

From real to Chebyshev space

Zm
`n(t) =

1

2N

[
Zm
` (r0, t) + Zm

` (rN , t) + 2
N−1∑
n=1

Zm
` (rn, t) cos

(
n k π

N

)]
This is a fast discrete cosine transform: this forces us to use some “FFT-friendly”

number of radial grid points.
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Chebyshev polynomials: summary

Take-away messages on Chebyshev polynomials

Gauss-Lobatto grid: boundary layer refinement and “FFT-friendly”

Chebyshev space to grid n→ r : discrete cosine transform

Grid to Chebyshev space r → n : discrete cosine transform

DCT: O(Nr log(Nr))

DCT: prime decomposition of Nr − 1 should only contain multiple of 2, 3 and 5

Documentation

https://magic-sph.github.io/numerics.html#radial-representation
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Spectral poloidal dynamo equation (1/4)

All the necessary tools to derive the spectral equations have been introduced

As an example, I focus here on the derivation of the equation for the poloidal
magnetic field potential:

∂B

∂t
= ∇ (u× B) +

1

Pm
∆B

To derive the equation for gm
`n, take the radial component of the induction equation



Poloidal-toroidal decomposition Spherical harmonic representation Radial representation Spectral equations

Spectral poloidal dynamo equation (2/4)
Time derivative

Time derivative:

er ·
∂B

∂t
=
∂Br

∂t

We have

Br (r , θ, φ, t) = −∆H g =
∑
`,m

`(`+ 1)

r2
gm
` (r , t)Y m

` (θ, φ)

Hence

er ·
∂B

∂t
=
∑
`,m

`(`+ 1)

r2
∂gm

`

∂t
Y m
`
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Spectral poloidal dynamo equation (2/4)
Time derivative

Time derivative:

er ·
∂B

∂t
=
∂Br

∂t

We have

Br (r , θ, φ, t) = −∆H g =
∑
`,m

`(`+ 1)

r2
gm
` (r , t)Y m

` (θ, φ)

Hence

er ·
∂B

∂t
=
∑
`,m

`(`+ 1)

r2
∂gm

`

∂t
Y m
`
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Spectral poloidal dynamo equation (2/4)
Time derivative

Time derivative:

er ·
∂B

∂t
=
∂Br

∂t

We have

Br (r , θ, φ, t) = −∆H g =
∑
`,m

`(`+ 1)

r2
gm
` (r , t)Y m

` (θ, φ)

Hence

er ·
∂B

∂t
=
∑
`,m

`(`+ 1)

r2
∂gm

`

∂t
Y m
`
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Spectral poloidal dynamo equation (3/4)
Diffusion term

Same procedure:

er ·
(

1

Pm
∆B

)
=

1

Pm

(
∆Br −

2

r2
Br −

2

r
∇H · B

)
=

1

Pm

(
∆Br −

2

r2
Br −∇ · B︸ ︷︷ ︸

=0

+
2

r3
∂

∂r
(r2Br )

)

=
1

Pm

(
1

r2
∂2(r2Br )

∂r2
+ ∆HBr

)

Hence

er ·
(

1

Pm
∆B

)
=

1

Pm

∑
`,m

`(`+ 1)

r2

(
∂2gm

`

∂r2
− `(`+ 1)

r2
gm
`

)
Y m
`
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Spectral poloidal dynamo equation (3/4)
Diffusion term

Same procedure:

er ·
(

1

Pm
∆B

)
=

1

Pm

(
∆Br −

2

r2
Br −

2

r
∇H · B

)
=

1

Pm

(
∆Br −

2

r2
Br −∇ · B︸ ︷︷ ︸

=0

+
2

r3
∂

∂r
(r2Br )

)

=
1

Pm

(
1

r2
∂2(r2Br )

∂r2
+ ∆HBr

)
Hence

er ·
(

1

Pm
∆B

)
=

1

Pm

∑
`,m

`(`+ 1)

r2

(
∂2gm

`

∂r2
− `(`+ 1)

r2
gm
`

)
Y m
`
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Spectral poloidal dynamo equation (4/4)

Now mulitply by Y m
`
∗ and expand in Chebyshev polynomials:

`(`+ 1)

r2

[(
∂

∂t
+

1

Pm

`(`+ 1)

r2

)
Cn −

1

Pm
C′′n
]

gm
`n =

∫
(er ·D) Y m

`
∗ dΩ

where D is the nonlinear induction term expressed by

D = ∇× (u× B)

How do we treat this remaining term?
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Spectral poloidal dynamo equation (4/4)

Now mulitply by Y m
`
∗ and expand in Chebyshev polynomials:

`(`+ 1)

r2

[(
∂

∂t
+

1

Pm

`(`+ 1)

r2

)
Cn −

1

Pm
C′′n
]

gm
`n =

∫
(er ·D) Y m

`
∗ dΩ

where D is the nonlinear induction term expressed by

D = ∇× (u× B)

How do we treat this remaining term?
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Solving the nonlinear terms

1 Calculate the horizontal component of EMF F = u× B on physical grid

Fθ = uφBr − urBφ; Fφ = urBθ − uθBr

such that

Ng = er ·D =
1

r sin θ

[
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

]

2 Transform to spectral space:

Fθ(θ, φ)
FFT, Leg.−−−−−−→ F̂θ

m
` ; Fφ(θ, φ)

FFT, Leg.−−−−−−→ F̂φ
m

`

3 Calculate θ and φ derivatives using recurrence relations:

Nm
` = (`+ 1)cm

` F̂φ
m

`−1 − `cm
`+1F̂φ

m

`+1 − im F̂θ
m
`
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Solving the nonlinear terms

1 Calculate the horizontal component of EMF F = u× B on physical grid

Fθ = uφBr − urBφ; Fφ = urBθ − uθBr

such that

Ng = er ·D =
1

r sin θ

[
∂(sin θFφ)

∂θ
− ∂Fθ

∂φ

]
2 Transform to spectral space:

Fθ(θ, φ)
FFT, Leg.−−−−−−→ F̂θ

m
` ; Fφ(θ, φ)

FFT, Leg.−−−−−−→ F̂φ
m

`

3 Calculate θ and φ derivatives using recurrence relations:

Nm
` = (`+ 1)cm

` F̂φ
m

`−1 − `cm
`+1F̂φ

m

`+1 − im F̂θ
m
`
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Spectral poloidal dynamo equation

Equation for each spherical harmonic degree and order

`(`+ 1)

r2

[(
∂

∂t
+

1

Pm

`(`+ 1)

r2

)
Cn −

1

Pm
C′′n
]

gm
`n = Nm

`

General recipe

We proceed the same way to derive the other equations for W m
` , Zm

` , sm` , hm
` , pm

`

Nonlinear terms are treated on the grid, linear terms in the spectral space (except
Coriolis force, see after)

Each equation couples N + 1 Chebyshev coefficients for a given spherical
harmonic mode (`,m)

Documentation

https://magic-sph.github.io/numerics.html#spectral-equations
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Mechanical boundary conditions

Impermeable boundaries = zero radial flow on the boundaries:

ur = 0 → Cn(r)W m
`n = 0 at r = ri , ro

Rigid boundaries = no-slip boundary condition (velocity cancels out):

uθ = uφ = 0 → C′n(r)W m
`n = Cn(r)Zm

`n = 0 at r = ri , ro

Or stress-free boundary conditions:

∂

∂r

(uθ
r

)
= 0

∂

∂r

(uφ
r

)
= 0

→


[
C′′n (r)−

(
2

r
+ Lρ

)
C′n(r)

]
Wm
`n = 0[

C′n(r)−
(

2

r
+ Lρ

)
Cn(r)

]
Zm
`n = 0

at r = ri , ro

with Lρ ≡
d ln ρ̃

dr
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Magnetic boundary conditions

Insulating (vacuum) boundary condition = toroidal field cannot enter an insulator
(no current):

B = −∇Φ → Cn(r) hm
`n = 0 at r = ri , ro

Matching condition for the poloidal field:

B = −∇Φ →


[
C′n(r) +

`+ 1

r
Cn(r)

]
gm
`n = 0 at r = ri[

C′n(r) +
`

r
Cn(r)

]
gm
`n = 0 at r = ro

Other possible boundary conditions: pseudo-vacuum, conducting inner core, ...
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Thermal boundary conditions

Constant entropy (or constant temperature):

s ′ (or T ′) = 0 → Cn(r) s ′
m
`n = 0 at r = ri , ro

Constant entropy flux (or constant temperature flux):

∂s ′

∂r

(
or
∂T ′

∂r

)
= 0 → C′n(r) s ′

m
`n = 0 at r = ri , ro

On top of that, heterogeneous thermal boundary conditions can be produced
by imposing a suitable combination of (`,m) modes...

Documentation

https://magic-sph.github.io/numerics.html#boundary-conditions-and-inner-core
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