The spherical MHD code MagIC Advanced (1/2)

Thomas Gastine

Institut de Physique du Globe de Paris

5th July 2017

Maglo

Outline

1 Poloidal-toroidal decomposition

2 Spherical harmonic representation

3 Radial representation

4 Spectral equations

- MagIC simulates rotating fluid dynamics in a spherical shell
- It solves for the coupled evolution of Navier-Stokes equation, NHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
\square A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
- MaglC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Poloidal-toroidal decomposition of solenoidal vectors

General characterisation for solenoidal vector fields:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{v}=0 \quad \Leftrightarrow \quad \mathbf{v} & =\mathbf{P}+\mathbf{T} \\
\mathbf{v} & =\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times\left(W \mathbf{e}_{\mathbf{r}}\right)+\boldsymbol{\nabla} \times\left(Z \mathbf{e}_{\mathbf{r}}\right)
\end{aligned}
$$

W is the poloidal potential and Z is the toroidal potential (e.g. Chandrasekhar 1961). The radial component of the vector \mathbf{v} is purely poloidal.

Poloidal/Toroidal decomposition

Three unknown field components of a solenoidal vector can be replaced by two scalar fields.

Dimensionless Boussinesq MHD equations

From 9 equations for 8 unknowns.

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{u} & =0 \\
\boldsymbol{\nabla} \cdot \mathbf{B} & =0 \\
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+\frac{2}{E} \mathbf{e}_{\mathbf{z}} \times \mathbf{u} & =-\nabla p^{\prime}+\frac{R a}{P r} g(r) T^{\prime} \mathbf{e}_{\mathbf{r}}+\frac{1}{E P m}(\boldsymbol{\nabla} \times \mathbf{B}) \times \mathbf{B}+\mathbf{\Delta} \mathbf{u} \\
\frac{\partial \mathbf{B}}{\partial t} & =\nabla \times(\mathbf{u} \times \mathbf{B})+\frac{1}{P m} \mathbf{\Delta} \mathbf{B} \\
\frac{\partial T^{\prime}}{\partial t}+\mathbf{u} \cdot \boldsymbol{\nabla} T^{\prime} & =\frac{1}{P r} \boldsymbol{\Delta} T^{\prime}
\end{aligned}
$$

9 equations, 8 unknowns...

1 Introduce $\mathrm{Pol} /$ Tor decomposition for $\tilde{\rho} \mathbf{u}$ and \mathbf{B} :

$$
\begin{aligned}
\tilde{\rho} \mathbf{u} & =\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times\left(W \mathbf{e}_{\mathbf{r}}\right)+\boldsymbol{\nabla} \times\left(Z \mathbf{e}_{\mathbf{r}}\right) \\
\mathbf{B} & =\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times\left(g \mathbf{e}_{\mathbf{r}}\right)+\boldsymbol{\nabla} \times\left(h \mathbf{e}_{\mathbf{r}}\right)
\end{aligned}
$$

26 unknowns: W, Z, g, h, p^{\prime} and T^{\prime}
3 Establish poloidal and toroidal Navier-Stokes equations, poloidal and toroidal induction equations, an equation for pressure and heat equation.

Poloidal/Toroidal equations (1/3)

Operators

From vectorial to toroidal and poloidal equations via operators:

$$
\begin{aligned}
\mathbf{e}_{\mathbf{r}} \cdot[\tilde{\rho} \mathbf{u}] & =-\Delta_{H} W, \\
\mathbf{e}_{\mathbf{r}} \cdot[\boldsymbol{\nabla} \times \tilde{\rho} \mathbf{u}] & =-\Delta_{H} Z,
\end{aligned}
$$

where Δ_{H} denotes the horizontal part of the Laplacian:

$$
\Delta_{H}=\Delta-\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)=\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2}}{\partial^{2} \phi}
$$

N.B. vectors can be expanded as follows:

$$
\tilde{\rho} u_{r}=-\Delta_{H} W ; \quad \tilde{\rho} u_{\theta}=\frac{1}{r} \frac{\partial^{2} W}{\partial r \partial \theta}+\frac{1}{r \sin \theta} \frac{\partial Z}{\partial \phi} ; \quad \tilde{\rho} u_{\phi}=\frac{1}{r \sin \theta} \frac{\partial^{2} W}{\partial r \partial \phi}-\frac{1}{r} \frac{\partial Z}{\partial \theta}
$$

Poloidal/Toroidal equations (2/3)

■ Poloidal potential: take $\mathbf{e}_{\mathrm{r}} \cdot[\ldots]$ of the NS equation:

$$
\mathbf{e}_{\mathbf{r}} \cdot \tilde{\rho} \frac{\partial \mathbf{u}}{\partial t}=\frac{\partial}{\partial t}\left(\mathbf{e}_{\mathbf{r}} \cdot \tilde{\rho} \mathbf{u}\right)=-\Delta_{H} \frac{\partial W}{\partial t}
$$

- Toroidal potential: take $\mathbf{e}_{\mathrm{r}} \cdot \nabla \times[\cdots]$ of the NS equation:

$$
\mathbf{e}_{\mathbf{r}} \cdot \boldsymbol{\nabla} \times\left(\frac{\partial \tilde{\rho} \mathbf{u}}{\partial t}\right)=\frac{\partial}{\partial t}\left(\mathbf{e}_{\mathbf{r}} \cdot \nabla \times \tilde{\rho} \mathbf{u}\right)=-\Delta_{H} \frac{\partial Z}{\partial t}
$$

■ Pressure: take $\nabla_{H} \cdot[\cdots]$ of the NS equation:

$$
\nabla_{H} \cdot\left(\tilde{\rho} \frac{\partial u}{\partial t}\right)=\Delta_{H} \frac{\partial}{\partial t}\left(\frac{\partial W}{\partial r}\right)
$$

N.B. Some spherical shell codes get rid of pressure by instead taking $\mathrm{e}_{\mathrm{r}} \cdot \nabla \times \nabla \times[\cdots]$ to derive the equation for the toroidal potential

Poloidal/Toroidal equations (3/3)

One has to proceed the same way for each linear term! As an example: Coriolis force that enters the toroidal potential equation:

$$
\begin{aligned}
\mathbf{e}_{\mathbf{r}} \cdot \boldsymbol{\nabla} \times\left[2 \tilde{\rho} \mathbf{u} \times \mathbf{e}_{\mathbf{z}}\right]= & 2 \mathbf{e}_{\mathbf{r}} \cdot\left[\left(\mathbf{e}_{\mathbf{z}} \cdot \nabla\right)(\tilde{\rho} \mathbf{u})\right] \\
= & 2\left[\cos \theta \frac{\partial\left(\tilde{\rho} u_{r}\right)}{\partial r}-\frac{\sin \theta}{r} \frac{\partial\left(\tilde{\rho} u_{r}\right)}{\partial \theta}+\frac{\tilde{\rho} u_{\theta} \sin \theta}{r}\right] \\
= & 2\left[-\cos \theta \frac{\partial}{\partial r}\left(\Delta_{H} W\right)+\right. \\
& \left.\frac{\sin \theta}{r} \frac{\partial}{\partial \theta}\left(\Delta_{H} W\right)+\frac{\sin \theta}{r^{2}} \frac{\partial^{2} W}{\partial r \partial \theta}+\frac{1}{r^{2}} \frac{\partial Z}{\partial \phi}\right]
\end{aligned}
$$

Outline

1 Poloidal-toroidal decomposition

2 Spherical harmonic representation

3 Radial representation

4 Spectral equations
\square MagIC simulates rotating fluid dynamics in a spherical shell

- It solves for the counled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
\square Poloidal/toroidal decomposition is emnloved
MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
\square MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid narallelisation scheme (MPI/OnerMP)

Spherical harmonic functions

- Spherical harmonic functions Y_{ℓ}^{m} are a natural choice for the horizontal expansion in colatitude θ and longitude ϕ

$$
Y_{\ell}^{m}(\theta, \phi)=P_{\ell}^{m}(\cos \theta) e^{i m \phi}
$$

- Degree ℓ and order m
- In MagIC, we adopt a complete normalisation of SH :

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} Y_{\ell}^{m}(\theta, \phi) Y_{\ell^{\prime}}^{m^{\prime *}}(\theta, \phi) \sin \theta \mathrm{d} \theta \mathrm{~d} \phi=\delta_{\ell \ell^{\prime}} \delta^{m m^{\prime}}
$$

- This yields:

$$
Y_{\ell}^{m}(\theta, \phi)=\left(\frac{(2 \ell+1)}{4 \pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}\right)^{1 / 2} P_{\ell}^{m}(\cos \theta) e^{i m \phi}
$$

First few spherical harmonics

00000000

Some mathematical properties of the spherical harmonics

■ Complete and orthogonal eigenfunctions of Δ_{H} :

$$
\Delta_{H} Y_{\ell}^{m}=-\frac{\ell(\ell+1)}{r^{2}} Y_{\ell}^{m}
$$

- Some useful recursion relations:

$$
\begin{aligned}
\cos \theta Y_{\ell}^{m} & =c_{\ell+1}^{m} Y_{\ell+1}^{m}+c_{\ell}^{m} Y_{\ell-1}^{m} \\
\sin \theta \frac{\partial Y_{\ell}^{m}}{\partial \theta} & =\ell c_{\ell+1}^{m} Y_{\ell+1}^{m}-(\ell+1) c_{\ell}^{m} Y_{\ell-1}^{m} \\
\text { with } \quad c_{\ell m} & =\left[\frac{(\ell+m)(\ell-m)}{(2 \ell+1)(2 \ell-1)}\right]^{1 / 2}
\end{aligned}
$$

- Practically this is how θ and ϕ derivatives are computed in MagIC

From spatial to spectral space $(1 / 4)$

Inverse spherical harmonic transform

$$
(r, \theta, \phi) \quad \rightarrow \quad(r, \ell, m)
$$

Suppose we have $Z(r, \theta, \phi, t)$ on a longitude/latitude representation (N_{θ}, N_{ϕ}). The expansion of the horizontal structure in series of spherical harmonics yields:

$$
Z(r, \theta, \phi, t)=\sum_{\ell=0}^{\ell_{\max }} \sum_{m=-\ell}^{\ell} Z_{\ell}^{m}(r, t) Y_{\ell}^{m}(\theta, \phi)
$$

Spherical harmonic representation truncated at degree and order $\ell_{\text {max }}$.

Inverse spherical harmonic transform

$$
(r, \theta, \phi) \quad \rightarrow \quad(r, \ell, m)
$$

One has

$$
Z_{\ell}^{m}(r, t)=\frac{1}{\pi} \int_{0}^{\pi} Z^{m}(r, \theta, t) P_{\ell}^{m}(\cos \theta) \sin \theta \mathrm{d} \theta
$$

with

$$
Z^{m}(r, \theta, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} Z(r, \theta, \phi, t) e^{-i m \phi} \mathrm{~d} \phi
$$

Inverse spherical harmonic transform

$$
(r, \theta, \phi) \quad \rightarrow \quad(r, \ell, m)
$$

One has

$$
Z_{\ell}^{m}(r, t)=\frac{1}{\pi} \int_{0}^{\pi} Z^{m}(r, \theta, t) P_{\ell}^{m}(\cos \theta) \sin \theta \mathrm{d} \theta
$$

with

$$
Z^{m}(r, \theta, t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} Z(r, \theta, \phi, t) e^{-i m \phi} \mathrm{~d} \phi
$$

How do we compute those transformations?

From spatial to spectral space $(3 / 4)$

Inverse spherical harmonic transform

$$
(r, \theta, \phi) \quad \rightarrow \quad(r, \ell, m)
$$

First, we compute an inverse FFT:

$$
\begin{aligned}
Z^{m}(r, \theta, t) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} Z(r, \theta, \phi, t) e^{-i m \phi} \mathrm{~d} \phi \\
& =\frac{1}{N_{\phi}} \sum_{j=0}^{N_{\phi}-1} Z\left(r, \theta, \phi_{j}, t\right) e^{-i m \phi_{j}} \quad \text { with } \quad \phi_{j}=\frac{2 j \pi}{N_{\phi}}
\end{aligned}
$$

$\rightarrow \phi_{j}$ needs to be evenly spaced. N_{ϕ} must be "FFT-friendly" (restrictions in MagIC).

From spatial to spectral space $(4 / 4)$

Inverse spherical harmonic transform

$$
(r, \theta, \phi) \quad \rightarrow \quad(r, \ell, m)
$$

Second, we compute an inverse Legendre transform

$$
\begin{aligned}
Z_{\ell}^{m}(r, t) & =\frac{1}{\pi} \int_{0}^{\pi} Z^{m}(r, \theta, t) P_{\ell}^{m}(\cos \theta) \sin \theta \mathrm{d} \theta \\
& =\frac{1}{N_{\theta}} \sum_{k=0}^{N_{\theta}-1} w_{k} Z^{m}\left(r, \theta_{k}, t\right) P_{\ell}^{m}\left(\cos \theta_{k}\right)
\end{aligned}
$$

Gaussian quadrature points and Gauss-Legendre weights yield:

$$
\theta_{k} \quad \text { given by } \quad P_{N_{\theta}}^{0}\left(\cos \theta_{k}\right)=0 \quad \text { and } \quad w_{k}=\frac{2}{\left(N_{\theta}+1\right)^{2}}\left(\frac{\sin \theta_{k}}{P_{N_{\theta}+1}^{0}\left(\cos \theta_{k}\right)}\right)^{2}
$$

Inverse spherical harmonic transform

$$
(r, \ell, m) \quad \rightarrow \quad(r, \theta, \phi)
$$

Simply the opposite procedure
1 Fourier transform: $(r, \ell, m) \quad \rightarrow \quad(r, \ell, \phi)$
2 Legendre transform: $(r, \ell, \phi) \quad \rightarrow \quad(r, \theta, \phi)$

A bit more on Legendre transforms...

- No fast Legendre transform available: $\mathcal{O}\left(N_{\theta}^{2}\right)$ for one transform!

$$
(r, \theta, \phi) \rightarrow(r, \ell, m) \Longrightarrow \mathcal{O}\left(N_{r} N_{\phi} N_{\theta}^{2}\right)
$$

■ But "savings": Y_{ℓ}^{m} symmetries (only half of the colatitudes required), polar optimisations, ...
■ SHTns is a high-performance library for SH transforms (https://bitbucket. org/nschaeff/shtns). It can be used in MagIC and provide a significant speedup for large truncations.

- Triangular truncation provides a balanced spatial resolution over the spherical surface $\rightarrow N_{\phi}=2 N_{\theta}$

Avoid aliasing problems
Integration of quadratic terms on a discrete grid yields:

$$
\begin{aligned}
u v & =\sum_{p=-K}^{K} a_{p} e^{i p x} \sum_{q=-K}^{K} a_{q} e^{i q x} \\
& =\sum_{k=-2 K}^{2 K} b_{k} e^{i k x}
\end{aligned}
$$

Avoid aliasing problems

Integration of quadratic terms on a discrete grid yields:

$$
\begin{aligned}
u v & =\sum_{p=-K}^{K} a_{p} e^{i p x} \sum_{q=-K}^{K} a_{q} e^{i q x} \\
& =\sum_{k=-2 K}^{2 K} b_{k} e^{i k x}
\end{aligned}
$$

Alias-free SH transform

Orszag's (1971) 2/3 dealiasing rule: "to obtain an alias-free computation on a grid of N points for a quadratically nonlinear equation, filter the high wavenumbers so as to retain only (2/3)N unfiltered wavenumbers." (Boyd 2001)

$$
N_{\theta} \geq \frac{3 \ell_{\max }+1}{2}
$$

Spherical harmonic transforms: summary

Take-away messages on SH transforms
■ Spectral to spatial $(r, \ell, m) \rightarrow(r, \theta, \phi)$: Fourier and Legendre transforms

- Spatial to spectral $(r, \theta, \phi) \rightarrow(r, \ell, m)$: inverse Fourier and Legendre transforms
- FFT: $\mathcal{O}\left(\mathbf{N}_{\mathbf{r}} \mathbf{N}_{\theta} \mathbf{N}_{\phi} \log \left(\mathbf{N}_{\phi}\right)\right)$
- Legendre transform represents the most important part of the spherical harmonic transform: $\mathcal{O}\left(\mathbf{N}_{\mathbf{r}} \mathbf{N}_{\phi} \mathbf{N}_{\theta}^{2}\right)$
- FFT: prime decomposition of N_{ϕ} should only contain multiple of 2, 3 and 5 (for built-in FFT)
- Alias-free SH transforms require: $N_{\theta} \geq \frac{3 \ell_{\max }+1}{2}$

MagIC structure

Outline

1 Poloidal-toroidal decomposition

2 Spherical harmonic representation

3 Radial representation

4 Spectral equations
\square MagIC simulates rotating fluid dynamics in a spherical shell

- It solves for the counled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed
- MaglC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
\square Poloidal/toroidal decomposition is emploved
- MaglC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
- MaglC uses a mixed implicit/explicit time stepping scheme
\square The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Radial representation in spherical shell codes

Different approaches have been employed to represent the radial variation of the unknowns:

- calypso, Parody, xshells, ... : finite differences (usually 2nd order)
- ASH, Rayleigh, ... : expansion in Chebyshev polynomials.
- MagIC: since version 5.6: both FD and Chebyshev polynomials are supported. Special focus on spectral method here...

Some mathematical properties of Chebyshev polynomials

- The Chebyshev polynomial of degree n is defined by:

$$
\mathcal{C}_{n}(x)=\cos [n \arccos (x)], \quad-1<x<1
$$

- Recursion relation:

$$
\mathcal{C}_{n+1}(x)=2 x \mathcal{C}_{n}(x)-\mathcal{C}_{n-1}(x)
$$

- Derivatives

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{C}_{n+1}}{\mathrm{~d} x} & =2 \mathcal{C}_{n}+2 x \frac{\mathrm{~d} \mathcal{C}_{n}}{\mathrm{~d} x}-\frac{\mathrm{d} \mathcal{C}_{n-1}}{\mathrm{~d} x} \\
\frac{\mathrm{~d}^{2} \mathcal{C}_{n+1}}{\mathrm{~d} x^{2}} & =4 \frac{\mathrm{~d} \mathcal{C}_{n}}{\mathrm{~d} x}+2 x \frac{\mathrm{~d}^{2} \mathcal{C}_{n}}{\mathrm{~d} x^{2}}-\frac{\mathrm{d}^{2} \mathcal{C}_{n-1}}{\mathrm{~d} x^{2}}
\end{aligned}
$$

First Chebyshev polynomials

Gauss-Lobatto grid points (suitable for boundary layers and "FFT-friendly"):

$$
x_{k}=\cos \left(\frac{k \pi}{N}\right), \quad k=0,2, \cdots, N
$$

This yields

$$
\mathcal{C}_{n}\left(x_{k}\right)=\cos \left(\frac{n k \pi}{N}\right)
$$

The Gauss-Lobatto grid points are linearly mapped on a $\left[r_{i}, r_{o}\right]$ grid:

$$
r_{k}=r_{i}+\frac{r_{0}-r_{i}}{2}\left(1+\cos \left[\frac{k \pi}{N}\right]\right)
$$

N.B Additional nonlinear mappings can be used to modify the grid-point density

Radial representation (1/2)

Truncating the radial expansion of the toroidal flow potential at degree N reads:

$$
Z_{\ell}^{m}\left(r_{k}, t\right)=\sum_{n=0}^{N} Z_{\ell n}^{m}(t) \mathcal{C}_{n}\left(r_{k}\right)
$$

with

$$
Z_{\ell n}^{m}(t)=\frac{2-\delta_{n 0}-\delta_{n N}}{\pi} \int_{-1}^{1} \frac{Z_{\ell}^{m}(r(x), t) \mathcal{C}_{n}(x) \mathrm{d} x}{\sqrt{1-x^{2}}}
$$

Radial representation (1/2)

Truncating the radial expansion of the toroidal flow potential at degree N reads:

$$
Z_{\ell}^{m}\left(r_{k}, t\right)=\sum_{n=0}^{N} Z_{\ell n}^{m}(t) \mathcal{C}_{n}\left(r_{k}\right)
$$

with

$$
Z_{\ell n}^{m}(t)=\frac{2-\delta_{n 0}-\delta_{n N}}{\pi} \int_{-1}^{1} \frac{Z_{\ell}^{m}(r(x), t) \mathcal{C}_{n}(x) \mathrm{d} x}{\sqrt{1-x^{2}}}
$$

At this stage, we make use of the Gaussian quadrature rule:

$$
\int_{-1}^{1} f(x) w(x) \mathrm{d} x=\sum_{n=0}^{N} w_{n} f\left(x_{n}\right)
$$

Radial representation (2/2)

Using the Gauss-Lobatto grid with $x_{n}=\cos (n \pi / N)$ gives (e.g. Abramowitz \& Stegun)

$$
w_{j}= \begin{cases}\frac{\pi}{N} & i=1,2, \cdots, N-1 \\ \frac{\pi}{2 N} & i=0, N\end{cases}
$$

Radial representation (2/2)

Using the Gauss-Lobatto grid with $x_{n}=\cos (n \pi / N)$ gives (e.g. Abramowitz \& Stegun)

$$
w_{j}= \begin{cases}\frac{\pi}{N} & i=1,2, \cdots, N-1 \\ \frac{\pi}{2 N} & i=0, N\end{cases}
$$

This finally yields
From real to Chebyshev space

$$
Z_{\ell n}^{m}(t)=\frac{1}{2 N}\left[Z_{\ell}^{m}\left(r_{0}, t\right)+Z_{\ell}^{m}\left(r_{N}, t\right)+2 \sum_{n=1}^{N-1} Z_{\ell}^{m}\left(r_{n}, t\right) \cos \left(\frac{n k \pi}{N}\right)\right]
$$

This is a fast discrete cosine transform: this forces us to use some "FFT-friendly" number of radial grid points.

Chebyshev polynomials: summary

Take-away messages on Chebyshev polynomials
■ Gauss-Lobatto grid: boundary layer refinement and "FFT-friendly"
■ Chebyshev space to grid $n \rightarrow r$: discrete cosine transform

- Grid to Chebyshev space $r \rightarrow n$: discrete cosine transform
- DCT: $\mathcal{O}\left(\mathbf{N}_{\mathbf{r}} \log \left(\mathbf{N}_{\mathbf{r}}\right)\right)$
- DCT: prime decomposition of $N_{r}-1$ should only contain multiple of 2,3 and 5

Outline

1 Poloidal-toroidal decomposition

2 Spherical harmonic representation

3 Radial representation

4 Spectral equations

- Equations
- Boundary conditions

Spectral poloidal dynamo equation (1/4)

- All the necessary tools to derive the spectral equations have been introduced
- As an example, I focus here on the derivation of the equation for the poloidal magnetic field potential:

$$
\frac{\partial \mathbf{B}}{\partial t}=\boldsymbol{\nabla}(\mathbf{u} \times \mathbf{B})+\frac{1}{P m} \boldsymbol{\Delta} \mathbf{B}
$$

To derive the equation for $g_{\ell n}^{m}$, take the radial component of the induction equation

Spectral poloidal dynamo equation (2/4)

Time derivative

Time derivative:

$$
\mathbf{e}_{\mathbf{r}} \cdot \frac{\partial \mathbf{B}}{\partial t}=\frac{\partial B_{r}}{\partial t}
$$

Spectral poloidal dynamo equation (2/4)

Time derivative

Time derivative:

$$
\mathbf{e}_{\mathbf{r}} \cdot \frac{\partial \mathbf{B}}{\partial t}=\frac{\partial B_{r}}{\partial t}
$$

We have

$$
B_{r}(r, \theta, \phi, t)=-\Delta_{H} g=\sum_{\ell, m} \frac{\ell(\ell+1)}{r^{2}} g_{\ell}^{m}(r, t) Y_{\ell}^{m}(\theta, \phi)
$$

Spectral poloidal dynamo equation (2/4)

Time derivative

Time derivative:

$$
\mathbf{e}_{\mathbf{r}} \cdot \frac{\partial \mathbf{B}}{\partial t}=\frac{\partial B_{r}}{\partial t}
$$

We have

$$
B_{r}(r, \theta, \phi, t)=-\Delta_{H} g=\sum_{\ell, m} \frac{\ell(\ell+1)}{r^{2}} g_{\ell}^{m}(r, t) Y_{\ell}^{m}(\theta, \phi)
$$

Hence

$$
\mathbf{e}_{\mathbf{r}} \cdot \frac{\partial \mathbf{B}}{\partial t}=\sum_{\ell, m} \frac{\ell(\ell+1)}{r^{2}} \frac{\partial g_{\ell}^{m}}{\partial t} Y_{\ell}^{m}
$$

Spectral poloidal dynamo equation (3/4)

Diffusion term

Same procedure:

$$
\begin{aligned}
\mathbf{e}_{\mathbf{r}} \cdot\left(\frac{1}{P m} \boldsymbol{\Delta} \mathbf{B}\right) & =\frac{1}{P m}\left(\Delta B_{r}-\frac{2}{r^{2}} B_{r}-\frac{2}{r} \boldsymbol{\nabla}_{H} \cdot \mathbf{B}\right) \\
& =\frac{1}{P m}(\Delta B_{r}-\frac{2}{r^{2}} B_{r}-\underbrace{\nabla \cdot \mathbf{B}}_{=0}+\frac{2}{r^{3}} \frac{\partial}{\partial r}\left(r^{2} B_{r}\right)) \\
& =\frac{1}{P m}\left(\frac{1}{r^{2}} \frac{\partial^{2}\left(r^{2} B_{r}\right)}{\partial r^{2}}+\Delta_{H} B_{r}\right)
\end{aligned}
$$

Spectral poloidal dynamo equation (3/4)

Diffusion term

Same procedure:

$$
\begin{aligned}
\mathbf{e}_{\mathbf{r}} \cdot\left(\frac{1}{P m} \boldsymbol{\Delta} \mathbf{B}\right) & =\frac{1}{P m}\left(\Delta B_{r}-\frac{2}{r^{2}} B_{r}-\frac{2}{r} \boldsymbol{\nabla}_{H} \cdot \mathbf{B}\right) \\
& =\frac{1}{P m}(\Delta B_{r}-\frac{2}{r^{2}} B_{r}-\underbrace{\nabla \cdot \mathbf{B}}_{=0}+\frac{2}{r^{3}} \frac{\partial}{\partial r}\left(r^{2} B_{r}\right)) \\
& =\frac{1}{P m}\left(\frac{1}{r^{2}} \frac{\partial^{2}\left(r^{2} B_{r}\right)}{\partial r^{2}}+\Delta_{H} B_{r}\right)
\end{aligned}
$$

Hence

$$
\mathbf{e}_{\mathbf{r}} \cdot\left(\frac{1}{P m} \boldsymbol{\Delta} \mathbf{B}\right)=\frac{1}{P m} \sum_{\ell, m} \frac{\ell(\ell+1)}{r^{2}}\left(\frac{\partial^{2} g_{\ell}^{m}}{\partial r^{2}}-\frac{\ell(\ell+1)}{r^{2}} g_{\ell}^{m}\right) Y_{\ell}^{m}
$$

Spectral poloidal dynamo equation (4/4)

Now mulitply by $Y_{\ell}^{m *}$ and expand in Chebyshev polynomials:

$$
\frac{\ell(\ell+1)}{r^{2}}\left[\left(\frac{\partial}{\partial t}+\frac{1}{P m} \frac{\ell(\ell+1)}{r^{2}}\right) \mathcal{C}_{n}-\frac{1}{P m} \mathcal{C}_{n}^{\prime \prime}\right] g_{\ell n}^{m}=\int\left(\mathbf{e}_{\mathbf{r}} \cdot \mathcal{D}\right) Y_{\ell}^{m *} \mathrm{~d} \Omega
$$

where \mathcal{D} is the nonlinear induction term expressed by

$$
\mathcal{D}=\boldsymbol{\nabla} \times(\mathbf{u} \times \mathbf{B})
$$

Spectral poloidal dynamo equation (4/4)

Now mulitply by $Y_{\ell}^{m *}$ and expand in Chebyshev polynomials:

$$
\frac{\ell(\ell+1)}{r^{2}}\left[\left(\frac{\partial}{\partial t}+\frac{1}{P m} \frac{\ell(\ell+1)}{r^{2}}\right) \mathcal{C}_{n}-\frac{1}{P m} \mathcal{C}_{n}^{\prime \prime}\right] g_{\ell n}^{m}=\int\left(\mathbf{e}_{\mathbf{r}} \cdot \mathcal{D}\right) Y_{\ell}^{m *} \mathrm{~d} \Omega
$$

where \mathcal{D} is the nonlinear induction term expressed by

$$
\mathcal{D}=\nabla \times(\mathbf{u} \times \mathbf{B})
$$

How do we treat this remaining term?

Solving the nonlinear terms

1 Calculate the horizontal component of EMF $\mathcal{F}=\mathbf{u} \times \mathbf{B}$ on physical grid

$$
\mathcal{F}_{\theta}=u_{\phi} B_{r}-u_{r} B_{\phi} ; \quad \mathcal{F}_{\phi}=u_{r} B_{\theta}-u_{\theta} B_{r}
$$

such that

$$
\mathcal{N}_{g}=\mathbf{e}_{\mathbf{r}} \cdot \mathcal{D}=\frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta \mathcal{F}_{\phi}\right)}{\partial \theta}-\frac{\partial \mathcal{F}_{\theta}}{\partial \phi}\right]
$$

Solving the nonlinear terms

1 Calculate the horizontal component of EMF $\mathcal{F}=\mathbf{u} \times \mathbf{B}$ on physical grid

$$
\mathcal{F}_{\theta}=u_{\phi} B_{r}-u_{r} B_{\phi} ; \quad \mathcal{F}_{\phi}=u_{r} B_{\theta}-u_{\theta} B_{r}
$$

such that

$$
\mathcal{N}_{g}=\mathbf{e}_{\mathbf{r}} \cdot \mathcal{D}=\frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta \mathcal{F}_{\phi}\right)}{\partial \theta}-\frac{\partial \mathcal{F}_{\theta}}{\partial \phi}\right]
$$

2 Transform to spectral space:

$$
\mathcal{F}_{\theta}(\theta, \phi) \xrightarrow{\text { FFT, Leg. }} \hat{\mathcal{F}}_{\theta \ell}^{m} ; \quad \mathcal{F}_{\phi}(\theta, \phi) \xrightarrow{\text { FFT, Leg. }} \hat{\mathcal{F}}_{\phi \ell}^{m}
$$

Solving the nonlinear terms

1 Calculate the horizontal component of EMF $\mathcal{F}=\mathbf{u} \times \mathbf{B}$ on physical grid

$$
\mathcal{F}_{\theta}=u_{\phi} B_{r}-u_{r} B_{\phi} ; \quad \mathcal{F}_{\phi}=u_{r} B_{\theta}-u_{\theta} B_{r}
$$

such that

$$
\mathcal{N}_{g}=\mathbf{e}_{\mathbf{r}} \cdot \mathcal{D}=\frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta \mathcal{F}_{\phi}\right)}{\partial \theta}-\frac{\partial \mathcal{F}_{\theta}}{\partial \phi}\right]
$$

2 Transform to spectral space:

$$
\mathcal{F}_{\theta}(\theta, \phi) \xrightarrow{\text { FFT, Leg. }} \hat{\mathcal{F}}_{\theta \ell}^{m} ; \quad \mathcal{F}_{\phi}(\theta, \phi) \xrightarrow{\text { FFT, Leg. }} \hat{\mathcal{F}}_{\phi \ell}^{m}
$$

3 Calculate θ and ϕ derivatives using recurrence relations:

$$
\mathcal{N}_{\ell}^{m}=(\ell+1) c_{\ell}^{m} \hat{\mathcal{F}}_{\phi \ell-1}^{m}-\ell c_{\ell+1}^{m} \hat{\mathcal{F}}_{\phi \ell+1}^{m}-i m \hat{\mathcal{F}}_{\theta \ell}^{m}
$$

MagIC structure

Spectral poloidal dynamo equation

Equation for each spherical harmonic degree and order

$$
\frac{\ell(\ell+1)}{r^{2}}\left[\left(\frac{\partial}{\partial t}+\frac{1}{P m} \frac{\ell(\ell+1)}{r^{2}}\right) \mathcal{C}_{n}-\frac{1}{P m} \mathcal{C}_{n}^{\prime \prime}\right] g_{\ell n}^{m}=\mathcal{N}_{\ell}^{m}
$$

Spectral poloidal dynamo equation

Equation for each spherical harmonic degree and order

$$
\frac{\ell(\ell+1)}{r^{2}}\left[\left(\frac{\partial}{\partial t}+\frac{1}{P m} \frac{\ell(\ell+1)}{r^{2}}\right) \mathcal{C}_{n}-\frac{1}{P m} \mathcal{C}_{n}^{\prime \prime}\right] g_{\ell n}^{m}=\mathcal{N}_{\ell}^{m}
$$

General recipe

- We proceed the same way to derive the other equations for $W_{\ell}^{m}, Z_{\ell}^{m}, s_{\ell}^{m}, h_{\ell}^{m}, p_{\ell}^{m}$
- Nonlinear terms are treated on the grid, linear terms in the spectral space (except Coriolis force, see after)
- Each equation couples $N+1$ Chebyshev coefficients for a given spherical harmonic mode (ℓ, m)

Mechanical boundary conditions

- Impermeable boundaries $=$ zero radial flow on the boundaries:

$$
u_{r}=0 \quad \rightarrow \quad \mathcal{C}_{n}(r) W_{\ell n}^{m}=0 \text { at } r=r_{i}, r_{o}
$$

■ Rigid boundaries = no-slip boundary condition (velocity cancels out):

$$
u_{\theta}=u_{\phi}=0 \quad \rightarrow \quad \mathcal{C}_{n}^{\prime}(r) W_{\ell n}^{m}=\mathcal{C}_{n}(r) Z_{\ell n}^{m}=0 \text { at } r=r_{i}, r_{o}
$$

- Or stress-free boundary conditions:

$$
\begin{gathered}
\frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)=0 \\
\frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right)=0
\end{gathered} \rightarrow\left\{\begin{array}{c}
{\left[\mathcal{C}_{n}^{\prime \prime}(r)-\left(\frac{2}{r}+\mathcal{L}_{\rho}\right) \mathcal{C}_{n}^{\prime}(r)\right] W_{\ell n}^{m}=0} \\
{\left[\mathcal{C}_{n}^{\prime}(r)-\left(\frac{2}{r}+\mathcal{L}_{\rho}\right) \mathcal{C}_{n}(r)\right] Z_{\ell n}^{m}=0}
\end{array} \text { at } r=r_{i}, r_{o}\right.
$$

Magnetic boundary conditions

- Insulating (vacuum) boundary condition = toroidal field cannot enter an insulator (no current):

$$
\mathbf{B}=-\nabla \Phi \quad \rightarrow \quad \mathcal{C}_{n}(r) h_{\ell n}^{m}=0 \text { at } r=r_{i}, r_{0}
$$

- Matching condition for the poloidal field:

$$
\mathbf{B}=-\nabla \Phi \rightarrow\left\{\begin{array}{r}
{\left[\mathcal{C}_{n}^{\prime}(r)+\frac{\ell+1}{r} \mathcal{C}_{n}(r)\right] g_{\ell n}^{m}=0 \text { at } r=r_{i}} \\
{\left[\mathcal{C}_{n}^{\prime}(r)+\frac{\ell}{r} \mathcal{C}_{n}(r)\right] g_{\ell n}^{m}=0 \text { at } r=r_{0}}
\end{array}\right.
$$

- Other possible boundary conditions: pseudo-vacuum, conducting inner core, ...

Thermal boundary conditions

■ Constant entropy (or constant temperature):

$$
s^{\prime}\left(\text { or } T^{\prime}\right)=0 \quad \rightarrow \quad \mathcal{C}_{n}(r) s_{\ell n}^{\prime m}=0 \text { at } r=r_{i}, r_{0}
$$

■ Constant entropy flux (or constant temperature flux):

$$
\frac{\partial s^{\prime}}{\partial r}\left(\text { or } \frac{\partial T^{\prime}}{\partial r}\right)=0 \quad \rightarrow \quad \mathcal{C}_{n}^{\prime}(r) s_{\ell n}^{\prime m}=0 \text { at } r=r_{i}, r_{o}
$$

- On top of that, heterogeneous thermal boundary conditions can be produced by imposing a suitable combination of (ℓ, m) modes...

