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Crameri (2014)

VERIS (2013)
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Spherical geometry is more natural for studying rotating convection in
astrophysical and geophysical objects!
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The setup

Rotating spherical shell
Frame of reference rotating with system rotation Q



Introduction
0000

How?

Local methods = finite differences, volume, elements?

m PROS: easier to implement, more straightforward to parallelise, grid refinements
possible

m CONS: anisotropic grids, pole instability, problem with vacuum magnetic boundary
condition, more points required to get same accuracy
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How?

Spectral methods =expansion as complete sets of functions?

m PROS: derivatives easier to calculate with high accuracy, magnetic boundary con-
dition is straightforward, lower number of grid points required

m CONS: parallelisation harder to implement and more communications
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How?

To date spectral methods are more suitable!

“Local methods [...] need longer elapsed times than spectral methods to achieve the same
accuracy with the same number of processors. Spherical harmonic expansion methods
[...] offer the best assurance of efficiency for geodynamo simulations” (Matsui et al.
2016)
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Some milestones...

Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells
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Some milestones...

Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

Orszag (1970s): spectral methods in computational fluid dynamics

Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a
fully spectral code (roughly £ = m = 8)

Glatzmaier & Gilman (1980): onset of compressible convection in a spherical
shell

Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry
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Pseudo-spectral? What does it mean?

Pseudo-spectral codes

m The linear terms are expanded as complete sets of functions (e.g. spherical
harmonics, Chebyshev polynomials, Fourier functions, ...)

m Nonlinear terms treated in grid space rather than spectral space = numerical
transformations between spectral and spatial representations
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MaglC heritage

al, Fortran 77

= lasti
| Glatzmaier (1984) H ggﬁeﬁ:;harmonlcs+chehyshev

- Olson & Christensen (1996)
Toomre, Miesch, Clune (1998) non-dimensional
dimensional, Fortran 90 Boussinesq

anelastic = ' insulating inner core
closed-source ASH Mag - 9
MPI (2D configuration)

speeding-up (single processor)
OpenMP

Wicht (1998)
modular readable structure
conducting inner core
OpenMP, multiple diagnostics

Gastine (2010)

anelastic, Fortran 90

python postprocessing
Dannert (2013)

hybrid MPI/OpenMP, F2003, MKL
Gastine, Barik (2015)

Fully modular, open source
Documentation, website

Putigny, Schaeffer (2015)
SHTns: speed-up SH transforms

Gastine (2016)

double diffusive convection

Optional finite differences in radius

Gastine (2017) '
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MaglC in words

MaglC simulates rotating fluid dynamics in a spherical shell

m It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-

perature (or entropy) equation and an equation for chemical composition under both
the anelastic and the Boussinesq approximations

A dimensionless formulation of the equations is assumed

MaglC is a free software (GPL), written in Fortran

Post-processing relies on python libraries

Poloidal /toroidal decomposition is employed

MaglC uses spherical harmonic decomposition in the angular directions
Chebyshev polynomials or finite differences are employed in the radial direction
MaglC uses a mixed implicit/explicit time stepping scheme

The code relies on a hybrid parallelisation scheme (MP1/OpenMP)



Introduction
coeo

Stucture of the code

input namelist
perametrs,
inial conditon x -x(t)

c
S
&
2
3
=
£

spectral outputs
Specira, energies, checkpoint

MPI: |, m
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Website and documentation

m Since 2015: MaglIC is a hosted on https://github.com/magic-sph/magic

[ magic-sph/ magic ©Wach 1 HSar 8  YFork 2
<> Code Issues 2 Pull requests 0 Projects 0 Insights ~
MagIC is a high-performance code that solves the magneto-hydrodynamics equations in rotating spherical shells hitps:/magic-

sphgithubio/

© 784 commits 196 branches © 7 releases 22 7 contributors
]

Branch: master v || New pullrequest LT Clone o downioad ~

Latest commit 3315598 an hour ago

[ toastine fix auto-config when both 12py2 and f2py3 coexist

B bin nfig when both f2py2 and f2) [ an hour ago
. cmake mmon openmp flags to the top 14 days ago
B doc 4 days ago
i license - merge the | utines into the MP! version (iatest version) 2years ago
. python/magic Werge branch ‘master’ of https //github comimagic-s ph/magic 4 days ago
. samples fix unit for Gr. utput 15 days ago
. fiv ane Famniler warnina A dave ann

m Online documentation: https://magic-sph.github.io


https://github.com/magic-sph/magic
https://magic-sph.github.io
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MHD problem
m Fully compressible equations
m From fully compressible to anelastic
m Dimensionless anelastic equations



It solves for the coupled evolution of Navier-Stokes equation, MHD
equation, temperature (or entropy) equation and an equation for
chemical composition under both the anelastic and the Boussinesq
approximations
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Equation of motion for a compressible fluid

Continuity equation

Navier Stokes equation:

0 1
p(al;+u-Vu+2§2><u> :—Vp+pg+M—(V><B)><B+V-S
0

with the rate-of-strain tensor expressed by

Juj  Ou; 2
I" = _— 75’" ; .
S =vp <8Xj + ox; 377 u>
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Energy equation for a compressible fluid

pT(gi—i-u-VS) :V-(kTVT)+¢y+)\(VXB)2+€T

with the viscous heating ®,, expressed by

1
¢, =2p {eijeji - g(V : U)Z]

If in addition to that, compositional changes are also considered another equation for
the chemical composition £ reads

,0<(;§+U~V£> :V~(k§Vf)+€§
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Induction equation

Non-relativistic Maxwell equations provide

8—B=V><(u><B—>\V><B)
ot
with V-B =0
When ) is homogeneous, one simply gets
0B

E:VX(UXB)—F)\AB
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Equation of state

In general:
p="f(p,T,%)
or .
;8,0: —adT + 80p+ 00¢
where

p \OT

dp
().,
(%)

o€ p.p

1/0
Thermal expansivity: o« = —— <—’0>
&p
Compressibillity: 5 =

Chemical coefficient: § =

DR I
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From fully compressible to anelastic and Boussinesq

Reference state

MHD equations

MaglC either uses the anelastic or the Boussinesq approximation of the Navier Stokes
equation

Anelastic approximation = small disturbance (prime) around an adiabatic reference
state (tilde):
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Anelastic continuity equation

Using p = p + p yields
ap 9p

~ / _
QL—l—at +V - (pu)+ V- (pu)=0
-0 O(e2)
Estimate of the ratio
ap'jot ¢
o~z €
V. (pu) P

The first order anelastic equation thus reads

V.- (pu)=0
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Anelastic equations

Navier-Stokes equation:

) o at, 1
X - Vu+t2Qxu= a (VxB)xB+.V-S
ot b [of p

Energy equation:

ﬁrl'(fgst—i—u Vs) =V (krVT)+ 0, +A(V x B +er

Induction equation:

%—?:VX(UXB—)\VXB)
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Boundary conditions

m Mechanical boundary conditions:
Stress-free: n x (S-n) =0, ornoslippu=0, r=rr,
m Magnetic boundary conditions:
Vacuum: AB =0, r=r,t,

m Thermal boundary conditions:

oT' ,
Flux: — =0, ortemperature: T' =0, r=ri, 1,

or



A dimensionless formulation of the equations is assumed
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A dimensionless formulation of the anelastic MHD equation

MHD equations
MaglC uses a dimensionless form of the anelastic MHD equations

In MaglC, the viscous diffusion time is assumed to be the reference timescale and the
spherical shell gap the reference lengthscale:

Pl=pr=ro); [M=T(r=r0); [rl=ro—r;
d? 2

[=20 =2 1B= Vi@ [p)=lr = r0)%

This implies that the velocity is expressed in Reynolds number unit, and the magnetic
field in Elsasser number unit.
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Dimensionless anelastic MHD equations

In the case of an ideal gas with homogeneous kinematic viscosity v, thermal diffusivity s
and magnetic diffusivity A, one gets:

V- (pu) =0
V-B=0
%-kau—f—%ez><u:—V%-k%g(’)Sler-FﬁEle(VxB)XB‘F%V‘S
%—?:VX(UXB)JrP—lmAB
pT (%s;—i—u-Vs') :%V-(ﬁVT’H— D,"?fr <1>V+ﬁ(VxB)2

N.B. In case of compositional convection, another equation and two additional control parameters are required.
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Dimensionless Boussinesq MHD equations

In the Boussinesq limit, Di — 0, then

V.-u=0
V-B=0
a—+u Vu+ 2ez><u_—Vp +R—g( )Te,+7(V><B)><B+Au
ot E Pr E Pm

OB 1
E—VX(UXB)‘FEAB
(97-’ 1

ot VT _ﬁAT
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From physical properties to dimensionless numbers

Ekman number:

Rayleigh number:

Prandtl number:

Magnetic Prandtl number:
Dissipation number:

Radius ratio:

N.B. when Di — 0, the Boussinesq limit is recovered.

v
F=as
Ra— aTogod?As
CpVK

pr="

K

v
Pm= X
Di — aTsgo

Cp

=0
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The (astro/geo)physical regime

Parameter Earth's core  Giant planets ~ Sun

E 10715 10-18 10715

Ra 1077 1030 1024

Pr 0.1 0.1 10-°

Pm 10-° 107 103
A (Lorentz/Coriolis) 1 1 ?
Roy (Inertia/Coriolis) 1072 1073 1
Rm (adv./diff.) 1000 10° 10°

Re (adv./diff.) 10° 1012 102
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The (astro/geo)physical regime

Parameter Earth's core  Giant planets ~ Sun
E 10715 10-18 10715
Ra 1077 1030 1024
Pr 0.1 0.1 10-°
Pm 10-° 107 103
A (Lorentz/Coriolis) 1 1 ?
Roy (Inertia/Coriolis) 1072 1073 1
Rm (adv./diff.) 1000 10° 10°
10° 10%2 1012

Re (adv./diff.)

What does it actually implies? Is it possible to reach these parameters with my

numerical dynamo model?
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Reynolds number: the range of length-scale

Re = Umsd _ d where (4 = Y
v d Urms
d
by = —

Re
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Reynolds number: the range of length-scale

Re — rms d_d where (4 = Y
14 Ly Urms
d
by = —
97 Re

m In natural objects, Iy ~ 107°d
m In other words, the ratio of the bigger length-scale to the smallest one is 10°.

m You might need 10° grid points in each direction. This implies Repesy = 1.
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Ekman number: the range of time-scales

14 'Drot h d2
= —— =" where 7, =—
Qd? T, Yoy

7, is the viscous diffusion time, P, the rotation period.

E

Prot
E

T, =
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Ekman number: the range of time-scales

14 'Drot d2
E=— = where 7, = —
Qd? T, Yoy
7, is the viscous diffusion time, P, the rotation period.
P Prot
Y E

m In natural objects, 7, ~ 1015 P,
m In other words, the ratio of the longest time-scale to the smallest one is 101°!

m You might need 10 time steps to model the problem
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Summary
Parameter Earth's core  Tractable  Hard limit (2015)
E 10715 >107° 10~7
Ra 10% < 10%2 1013
Pr 0.1 0.1-10 1
Pm 10-° 0.1 6 x 1072
A (Lorentz/Coriolis) 1 1 1
Roy (Inertia/Coriolis) 1072 10~3 — 1071 1071
Rm (adv./diff.) 1000 1000 1000
Re (adv./diff.) 10° 100 — 1000 7000

Two complementary approaches

m In the “tractable” regime: parameter studies are possible

m In the “hard-limit” regime, only one single run is possible
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Installing and running the code
m Requirements and compilation
m Executing Magl|C



MaglC is a free software (GPL), written in Fortran
Post-processing relies on python libraries
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Requirements to compile MaglC

Mandatory Fortran and C compilers

Suggested git (https://git-scm.com/) to clone the code repository
Suggested CMake (https://cmake.org) to build the code

Suggested MPI library: rather use intelMPI or MPICH for full support for hybrid
MPI/OpenMP

Optional LAPACK or MKL

Optional SHTns for spherical harmonics transforms


https://git-scm.com/
https://cmake.org
http://www.netlib.org/lapack/
https://software.intel.com/en-us/mkl
https://bitbucket.org/bputigny/shtns-magic
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Data visualisation and post processing

Requirements

Post-processing functions are python based. You need to install the following libraries:

Python libraries required

Mandatory matplotlib (https://matplotlib.org): plotting functions
Mandatory scipy (https://www.scipy.org): scientific libraries
Suggested ipython (https://ipython.org): interactive shell

Optional basemap (https://matplotlib.org/basemap/): additional map
projections


https://matplotlib.org
https://www.scipy.org
https://ipython.org
https://matplotlib.org/basemap/
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Get the code and compile it

Install requirements:
$ module load gcc-6 gfortran-6 libopenmpi cmake git
$ module load python27 python-scipy ipython python-matplotlib
Clone the code from github
$ git clone https://github.com/magic-sph/magic.git
Set-up the environment variables
$ cd magic
$ source sourceme.sh # (or sourceme.csh)
Define the Fortran and C compilers
$ export FC=mpif90 # replace by your compiler
$ export CC=mpicc
Create a build directory and compile
$ mkdir build; cd build
$ cmake $MAGIC_HOME -DUSE_MPI=yes -DUSE_0OMP=no
$ make -j
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MaglC structure

input namelist
ameier
ntal condion  x1)

MagIC Start

tion|

8 input namelist
- parameters,

‘_U initial condition x =x(t,)
—

£}

precomputation
radial derivatives dx,,
operators, constants,

ni
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Run MaglC

Run with 8 CPUs:

$ export OMP_NUM_THREADS=1
$ mpiexec -n 8 magic.exe input.nml

input.nml contains all the input informations required to run the code!


https://magic-sph.github.io/inputNamelists/namelists.html

Installing and running the code
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Input namelist (1/3)

&grid

n_r_max =33, ! Radial resolution

n_cheb_max =31, ! Number of Chebyshev polynomials
n_phi_tot =192, ! Azimuthal resolution

minc =1, ! Azimuthal symmetry

/

&control

mode =0, ! Magnetic, mon-magnetic,

tag ="test", ! Extension of the output files
n_time_steps=40000, ! Number of timesteps

dtmax =1.0D-4, ! Mazimum timestep

runHours =02, I Run-time

runMinutes =00,



Input namelist (2/3)

&phys_param
ra =1.1D5,
ek =1.0D-3,
pPT =1.0D0,
prmag =5.0D0
radratio =0.35D0,
ktops =1,
ktopv =2,
/

&start_field
1_start_file=.false.,

!
!
!
!
!

Rayleigh number

Ekman number

Prandtl number

Magnetic Prandtl number

Radius ratio r_i/r_o

BC: fized-temperature at the top
BC: 7rigid wall at the top

! Start from a check point?

start_file ="checkpoint_end.start", ! Name of the check point

init_bl =3,
amp_b1 =1,
init_si =0404,
amp_s1 =0.03,

! Init. mag. field: dipole

! Amplitude \Lambda=1

! Init. temperature perturbation
! Amplitude of the init. pert.
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Input namelist (3/3)

&output_control
n_log_step =50, ! Output every n_log_step

n_graphs =3, ! Number of graphic files
n_rsts =1, ! Number of restart files
n_stores =0,

n_specs =1, ! Number of spectra
/
&mantle

nRotMa =0
/
&inner_core

sigma_ratio =1.d0, ! Conducting inner-core
nRotIC =1, ! Rotating inner core

/
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log. TAG file

log.TAG provides all the important information about the run:
m All parameters and other inputs including default values
m Information on parallelization, run time etc
m Log of important events: important output files, changing time step, ...

m Some important time averaged quantities, measures ...


https://magic-sph.github.io/outputFiles/logFile.html#seclogfile
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Plotting time series

e_kin.TAG is always produced. It contains the time evolution of kinetic energy.
To plot it:
m Open ipython and load the python modules
ipython --matplotlib=gtk (or ipython --pylab)
>>> from magic import *
>>> ts = MagicTs(field='e_kin') # Read e_kin.TAG file in $PWD
>>> pdoc MagicTs # Gives you the documentation
m Plot the time evolution of magnetic energy
>>> ts = MagicTs(field='e_mag oc') # Read e_mag_oc.TAG file in $PWD
m Manipulate the data
>>> print(ts.time, ts.emagoc_pol)


https://magic-sph.github.io/outputFiles/outTimeSeriesStd.html
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Loading and plotting snapshots

G_#.TAG files contain 3-D arrays on the grid:
m Load the G_1.TAG file:
>>> from magic import *
>>> g = Surf (ivar=1)
m Plot the radial velocity u, in the equatorial plane:
>>> g.equat(field="'vr')
m Plot the ¢-averaged azimuthal flow wuy:
>>> s.avg(field='vp', cm='seismic', levels=33)
m Plot the radial cut of B, at r = 0.75r,:
>>> s.surf(field='Br', r=0.75) # Hammer projection


https://magic-sph.github.io/outputFiles/outGraph.html
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Data visualisation and post processing
Additional outputs

m Plot spectra kin_spec_1.TAG

>>> # Plot kin_spec_1.TAG
>>> sp = MagicSpectrum(field='kin', ispec=1)

m Plot the time-averaged radial profile of magnetic energy eMagR.TAG

>>> # Plot eMagR.TAG
>>> r = MagicRadial(field='eMagR')

m And more...

>>> # Movie files (time evolution of 2D slices)
>>> m = Movie()


https://magic-sph.github.io/outputFiles/outSpecFiles.html
https://magic-sph.github.io/outputFiles/outRadialFiles.html
https://magic-sph.github.io/outputFiles/outMovie.html
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Data visualisation and post processing

3-D visualisation with paraview

Install a vtk-friendly software: here paraview but VisIt or mayavi should also work
fine.

Read the graphic file you want to convert

>>> from magic import MagicGraph

>>> gr = MagicGraph(ivar=1) # Load G_1.TAG
Convert it to a file format readable by paraview

>>> # Produce output.vts

>>> Graph2Vtk(gr, filename='output')
Load output.vts with paraview

$ paraview output.vts


https://magic-sph.github.io/apiPython/toParaview.html
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