
The spherical MHD code MagIC
Fundamentals

Thomas Gastine

Institut de Physique du Globe de Paris

6th July 2017

Introduction MHD problem Installing and running the code Postprocessing

Outline

1 Introduction
What for? How?
Introducting MagIC

2 MHD problem

3 Installing and running the code

4 Postprocessing

Introduction MHD problem Installing and running the code Postprocessing

What for?

Earth’s mantle Solar convective zone
C
r
a
m

e
r
i
(
2
0
1
4
)

V
E
R
I
S

(
2
0
1
3
)

Spherical geometry is more natural for studying rotating convection in
astrophysical and geophysical objects!

Introduction MHD problem Installing and running the code Postprocessing

What for?

Earth’s core Jupiter
G

la
t
z
m

a
ie

r
&

O
ls
o
n

(
2
0
0
5
)

C
a
s
s
in

i

Spherical geometry is more natural for studying rotating convection in
astrophysical and geophysical objects!

Introduction MHD problem Installing and running the code Postprocessing

What for?

Earth’s core Jupiter
G

la
t
z
m

a
ie

r
&

O
ls
o
n

(
2
0
0
5
)

C
a
s
s
in

i

Spherical geometry is more natural for studying rotating convection in
astrophysical and geophysical objects!

Introduction MHD problem Installing and running the code Postprocessing

The setup

Rotating spherical shell
Frame of reference rotating with system rotation Ω

Introduction MHD problem Installing and running the code Postprocessing

How?

Local methods = finite differences, volume, elements?

PROS: easier to implement, more straightforward to parallelise, grid refinements
possible
CONS: anisotropic grids, pole instability, problem with vacuum magnetic boundary
condition, more points required to get same accuracy

Introduction MHD problem Installing and running the code Postprocessing

How?

Spectral methods =expansion as complete sets of functions?

PROS: derivatives easier to calculate with high accuracy, magnetic boundary con-
dition is straightforward, lower number of grid points required
CONS: parallelisation harder to implement and more communications

Introduction MHD problem Installing and running the code Postprocessing

How?

To date spectral methods are more suitable!

“Local methods [...] need longer elapsed times than spectral methods to achieve the same
accuracy with the same number of processors. Spherical harmonic expansion methods
[...] offer the best assurance of efficiency for geodynamo simulations” (Matsui et al.
2016)

Introduction MHD problem Installing and running the code Postprocessing

Some milestones...

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a

fully spectral code (roughly ` = m = 8)
4 Glatzmaier & Gilman (1980): onset of compressible convection in a spherical

shell
5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

Introduction MHD problem Installing and running the code Postprocessing

Some milestones...

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

2 Orszag (1970s): spectral methods in computational fluid dynamics

3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a
fully spectral code (roughly ` = m = 8)

4 Glatzmaier & Gilman (1980): onset of compressible convection in a spherical
shell

5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

Introduction MHD problem Installing and running the code Postprocessing

Some milestones...

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a

fully spectral code (roughly ` = m = 8)

4 Glatzmaier & Gilman (1980): onset of compressible convection in a spherical
shell

5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

Introduction MHD problem Installing and running the code Postprocessing

Some milestones...

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a

fully spectral code (roughly ` = m = 8)
4 Glatzmaier & Gilman (1980): onset of compressible convection in a spherical

shell

5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

Introduction MHD problem Installing and running the code Postprocessing

Some milestones...

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a

fully spectral code (roughly ` = m = 8)
4 Glatzmaier & Gilman (1980): onset of compressible convection in a spherical

shell
5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

Introduction MHD problem Installing and running the code Postprocessing

Pseudo-spectral? What does it mean?

Pseudo-spectral codes

The linear terms are expanded as complete sets of functions (e.g. spherical
harmonics, Chebyshev polynomials, Fourier functions, ...)
Nonlinear terms treated in grid space rather than spectral space = numerical
transformations between spectral and spatial representations

Introduction MHD problem Installing and running the code Postprocessing

MagIC heritage

Introduction MHD problem Installing and running the code Postprocessing

MagIC in words

MagIC simulates rotating fluid dynamics in a spherical shell
It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
perature (or entropy) equation and an equation for chemical composition under both
the anelastic and the Boussinesq approximations
A dimensionless formulation of the equations is assumed
MagIC is a free software (GPL), written in Fortran
Post-processing relies on python libraries
Poloidal/toroidal decomposition is employed
MagIC uses spherical harmonic decomposition in the angular directions
Chebyshev polynomials or finite differences are employed in the radial direction
MagIC uses a mixed implicit/explicit time stepping scheme
The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Introduction MHD problem Installing and running the code Postprocessing

Stucture of the code

Introduction MHD problem Installing and running the code Postprocessing

Website and documentation

Since 2015: MagIC is a hosted on https://github.com/magic-sph/magic

Online documentation: https://magic-sph.github.io

https://github.com/magic-sph/magic
https://magic-sph.github.io

Introduction MHD problem Installing and running the code Postprocessing

Outline

1 Introduction

2 MHD problem
Fully compressible equations
From fully compressible to anelastic
Dimensionless anelastic equations

3 Installing and running the code

4 Postprocessing

� MagIC simulates rotating fluid dynamics in a spherical shell
� It solves for the coupled evolution of Navier-Stokes equation, MHD

equation, temperature (or entropy) equation and an equation for
chemical composition under both the anelastic and the Boussinesq
approximations

� A dimensionless formulation of the equations is assumed
� MagIC is a free software (GPL), written in Fortran
� Post-processing relies on python libraries
� Poloidal/toroidal decomposition is employed
� MagIC uses spherical harmonic decomposition in the angular directions
� Chebyshev polynomials or finite differences are employed in the radial direction
� MagIC uses a mixed implicit/explicit time stepping scheme
� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Introduction MHD problem Installing and running the code Postprocessing

Equation of motion for a compressible fluid

Continuity equation
∂ρ

∂t
+ ∇ · (ρu) = 0

Navier Stokes equation:

ρ

(
∂u
∂t

+ u ·∇u + 2Ω× u
)

= −∇p + ρ g +
1
µ0

(∇× B)× B + ∇ · S

with the rate-of-strain tensor expressed by

Sij = νρ

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij ∇ · u

)

Introduction MHD problem Installing and running the code Postprocessing

Energy equation for a compressible fluid

ρT
(
∂s
∂t

+ u ·∇s
)

= ∇ · (kT∇T) + Φν + λ (∇× B)2 + εT

with the viscous heating Φν expressed by

Φν = 2ρ
[
eijeji −

1
3

(∇ · u)2
]

If in addition to that, compositional changes are also considered another equation for
the chemical composition ξ reads

ρ

(
∂ξ

∂t
+ u ·∇ξ

)
= ∇ · (kξ∇ξ) + εξ

Introduction MHD problem Installing and running the code Postprocessing

Induction equation

Non-relativistic Maxwell equations provide

∂B
∂t

= ∇× (u × B − λ∇× B)

with ∇ · B = 0
When λ is homogeneous, one simply gets

∂B
∂t

= ∇× (u × B) + λ∆B

Introduction MHD problem Installing and running the code Postprocessing

Equation of state

In general:
p = f (ρ,T , ξ)

or
1
ρ
∂ρ = −α∂T + β ∂p + δ∂ξ

where

Thermal expansivity: α = −1
ρ

(
∂ρ

∂T

)
ξ,p

Compressibillity: β =
1
ρ

(
∂ρ

∂p

)
ξ,ρ

Chemical coefficient: δ =
1
ρ

(
∂ρ

∂ξ

)
p,ρ

Introduction MHD problem Installing and running the code Postprocessing

From fully compressible to anelastic and Boussinesq
Reference state

MHD equations

MagIC either uses the anelastic or the Boussinesq approximation of the Navier Stokes
equation

Anelastic approximation = small disturbance (prime) around an adiabatic reference
state (tilde):

ε ∼ s ′

cp
∼ T ′

T̃
∼ ρ′

ρ̃
∼ p′

p̃
∼ ξ′

ξ̃

The reference state is hydrostatic, adiabatic, and non magnetic:

∇p̃ = ρ̃ g ; ∇T̃ =
αT̃
cp

g ; ∇ξ̃ = 0

Introduction MHD problem Installing and running the code Postprocessing

Anelastic continuity equation

Using ρ = ρ̃+ ρ′ yields

∂ρ̃

∂t︸︷︷︸
=0

+
∂ρ′

∂t
+ ∇ · (ρ̃u) + ∇ ·

(
ρ′u
)︸ ︷︷ ︸

O(ε2)

= 0

Estimate of the ratio
∂ρ′/∂t
∇ · (ρ̃u)

∼ ρ′

ρ̃
∼ ε

The first order anelastic equation thus reads

∇ · (ρ̃u) = 0

Introduction MHD problem Installing and running the code Postprocessing

Anelastic equations

Navier-Stokes equation:

∂u
∂t

+ u ·∇u + 2Ω× u = −∇p′

ρ̃
− α̃T̃

cp
s ′g +

1
µ0ρ̃

(∇× B)× B +
1
ρ̃
∇ · S

Energy equation:

ρ̃T̃
(
∂s ′

∂t
+ u ·∇s ′

)
= ∇ ·

(
kT∇T ′

)
+ Φν + λ (∇× B)2 + εT

Induction equation:
∂B
∂t

= ∇× (u × B − λ∇× B)

Introduction MHD problem Installing and running the code Postprocessing

Boundary conditions

Mechanical boundary conditions:

Stress-free: n × (S · n) = 0, or no-slip: u = 0, r = ri , ro

Magnetic boundary conditions:

Vacuum: ∆B = 0, r = ri , ro

Thermal boundary conditions:

Flux:
∂T ′

∂r
= 0, or temperature: T ′ = 0, r = ri , ro

� MagIC simulates rotating fluid dynamics in a spherical shell
� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-

perature (or entropy) equation and an equation for chemical composition under both
the anelastic and the Boussinesq approximations

� A dimensionless formulation of the equations is assumed
� MagIC is a free software (GPL), written in Fortran
� Post-processing relies on python libraries
� Poloidal/toroidal decomposition is employed
� MagIC uses spherical harmonic decomposition in the angular directions
� Chebyshev polynomials or finite differences are employed in the radial direction
� MagIC uses a mixed implicit/explicit time stepping scheme
� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Introduction MHD problem Installing and running the code Postprocessing

A dimensionless formulation of the anelastic MHD equation

MHD equations

MagIC uses a dimensionless form of the anelastic MHD equations

In MagIC, the viscous diffusion time is assumed to be the reference timescale and the
spherical shell gap the reference lengthscale:

[ρ̃] = ρ̃(r = ro); [T̃] = T̃ (r = ro); [r] = ro − ri ;

[t] =
d2

ν
; [u] =

ν

d
; [B] =

√
µ0λρ̃Ω; [p′] = ρ̃(r = ro)

ν2

d2

This implies that the velocity is expressed in Reynolds number unit, and the magnetic
field in Elsasser number unit.

Introduction MHD problem Installing and running the code Postprocessing

Dimensionless anelastic MHD equations

In the case of an ideal gas with homogeneous kinematic viscosity ν, thermal diffusivity κ
and magnetic diffusivity λ, one gets:

∇ · (ρ̃u) = 0

∇ · B = 0

∂u
∂t

+ u ·∇u +
2
E

ez × u = −∇p′

ρ̃
+

Ra
Pr

g(r) s ′er +
1

ρ̃E Pm
(∇× B) × B +

1
ρ̃
∇ · S

∂B
∂t

= ∇× (u × B) +
1

Pm
∆B

ρ̃T̃
(
∂s ′

∂t
+ u ·∇s ′

)
=

1
Pr

∇ ·
(
ρ̃∇T ′) +

Di Pr
Ra

[
Φν +

1
Pm2 E

(∇× B)2
]

N.B. In case of compositional convection, another equation and two additional control parameters are required.

Introduction MHD problem Installing and running the code Postprocessing

Dimensionless Boussinesq MHD equations

In the Boussinesq limit, Di → 0, then

∇ · u = 0

∇ · B = 0
∂u
∂t

+ u ·∇u +
2
E

ez × u = −∇p′ +
Ra
Pr

g(r) T ′er +
1

E Pm
(∇× B) × B + ∆u

∂B
∂t

= ∇× (u × B) +
1

Pm
∆B

∂T ′

∂t
+ u ·∇T ′ =

1
Pr

∆T ′

Introduction MHD problem Installing and running the code Postprocessing

From physical properties to dimensionless numbers

Ekman number: E =
ν

Ω d2

Rayleigh number: Ra =
αTogod3∆s

cpνκ

Prandtl number: Pr =
ν

κ

Magnetic Prandtl number: Pm =
ν

λ

Dissipation number: Di =
αTogo

cp

Radius ratio: η =
ri
ro

N.B. when Di → 0, the Boussinesq limit is recovered.

Introduction MHD problem Installing and running the code Postprocessing

The (astro/geo)physical regime

Parameter Earth’s core Giant planets Sun

E 10−15 10−18 10−15

Ra 1027 1030 1024

Pr 0.1 0.1 10−6

Pm 10−6 10−7 10−3

Λ (Lorentz/Coriolis) 1 1 ?
Ro` (Inertia/Coriolis) 10−2 10−3 1

Rm (adv./diff.) 1000 105 109

Re (adv./diff.) 109 1012 1012

What does it actually implies? Is it possible to reach these parameters with my
numerical dynamo model?

Introduction MHD problem Installing and running the code Postprocessing

The (astro/geo)physical regime

Parameter Earth’s core Giant planets Sun

E 10−15 10−18 10−15

Ra 1027 1030 1024

Pr 0.1 0.1 10−6

Pm 10−6 10−7 10−3

Λ (Lorentz/Coriolis) 1 1 ?
Ro` (Inertia/Coriolis) 10−2 10−3 1

Rm (adv./diff.) 1000 105 109

Re (adv./diff.) 109 1012 1012

What does it actually implies? Is it possible to reach these parameters with my
numerical dynamo model?

Introduction MHD problem Installing and running the code Postprocessing

Reynolds number: the range of length-scale

Re =
urms d
ν

=
d
`d

where `d =
ν

urms

`d =
d
Re

In natural objects, ld ∼ 10−9 d
In other words, the ratio of the bigger length-scale to the smallest one is 109.
You might need 109 grid points in each direction. This implies Remesh = 1.

Introduction MHD problem Installing and running the code Postprocessing

Reynolds number: the range of length-scale

Re =
urms d
ν

=
d
`d

where `d =
ν

urms

`d =
d
Re

In natural objects, ld ∼ 10−9 d
In other words, the ratio of the bigger length-scale to the smallest one is 109.
You might need 109 grid points in each direction. This implies Remesh = 1.

Introduction MHD problem Installing and running the code Postprocessing

Ekman number: the range of time-scales

E =
ν

Ω d2 =
Prot

τν
where τν =

d2

ν

τν is the viscous diffusion time, Prot the rotation period.

τν =
Prot

E

In natural objects, τν ∼ 1015 Prot

In other words, the ratio of the longest time-scale to the smallest one is 1015!
You might need 1015 time steps to model the problem

Introduction MHD problem Installing and running the code Postprocessing

Ekman number: the range of time-scales

E =
ν

Ω d2 =
Prot

τν
where τν =

d2

ν

τν is the viscous diffusion time, Prot the rotation period.

τν =
Prot

E

In natural objects, τν ∼ 1015 Prot

In other words, the ratio of the longest time-scale to the smallest one is 1015!
You might need 1015 time steps to model the problem

Introduction MHD problem Installing and running the code Postprocessing

Summary
Parameter Earth’s core Tractable Hard limit (2015)

E 10−15 ≥ 10−6 10−7

Ra 1027 ≤ 1012 1013

Pr 0.1 0.1− 10 1
Pm 10−6 0.1 6× 10−2

Λ (Lorentz/Coriolis) 1 1 1
Ro` (Inertia/Coriolis) 10−2 10−3 − 10−1 10−1

Rm (adv./diff.) 1000 1000 1000
Re (adv./diff.) 109 100− 1000 7000

Two complementary approaches

In the “tractable” regime: parameter studies are possible

In the “hard-limit” regime, only one single run is possible

Introduction MHD problem Installing and running the code Postprocessing

Outline

1 Introduction

2 MHD problem

3 Installing and running the code
Requirements and compilation
Executing MagIC

4 Postprocessing

� MagIC simulates rotating fluid dynamics in a spherical shell
� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-

perature (or entropy) equation and an equation for chemical composition under both
the anelastic and the Boussinesq approximations

� A dimensionless formulation of the equations is assumed
� MagIC is a free software (GPL), written in Fortran
� Post-processing relies on python libraries
� Poloidal/toroidal decomposition is employed
� MagIC uses spherical harmonic decomposition in the angular directions
� Chebyshev polynomials or finite differences are employed in the radial direction
� MagIC uses a mixed implicit/explicit time stepping scheme
� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Introduction MHD problem Installing and running the code Postprocessing

Requirements to compile MagIC

Requirements

Mandatory Fortran and C compilers
Suggested git (https://git-scm.com/) to clone the code repository
Suggested CMake (https://cmake.org) to build the code
Suggested MPI library: rather use intelMPI or MPICH for full support for hybrid

MPI/OpenMP
Optional LAPACK or MKL
Optional SHTns for spherical harmonics transforms

https://git-scm.com/
https://cmake.org
http://www.netlib.org/lapack/
https://software.intel.com/en-us/mkl
https://bitbucket.org/bputigny/shtns-magic

Introduction MHD problem Installing and running the code Postprocessing

Data visualisation and post processing
Requirements

Post-processing functions are python based. You need to install the following libraries:

Python libraries required

Mandatory matplotlib (https://matplotlib.org): plotting functions
Mandatory scipy (https://www.scipy.org): scientific libraries
Suggested ipython (https://ipython.org): interactive shell
Optional basemap (https://matplotlib.org/basemap/): additional map

projections

https://matplotlib.org
https://www.scipy.org
https://ipython.org
https://matplotlib.org/basemap/

Introduction MHD problem Installing and running the code Postprocessing

Get the code and compile it

1 Install requirements:
$ module load gcc-6 gfortran-6 libopenmpi cmake git
$ module load python27 python-scipy ipython python-matplotlib

2 Clone the code from github
$ git clone https://github.com/magic-sph/magic.git

3 Set-up the environment variables
$ cd magic
$ source sourceme.sh # (or sourceme.csh)

4 Define the Fortran and C compilers
$ export FC=mpif90 # replace by your compiler
$ export CC=mpicc

5 Create a build directory and compile
$ mkdir build; cd build
$ cmake $MAGIC_HOME -DUSE_MPI=yes -DUSE_OMP=no
$ make -j

Introduction MHD problem Installing and running the code Postprocessing

MagIC structure

Introduction MHD problem Installing and running the code Postprocessing

Run MagIC

Run with 8 CPUs:
$ export OMP_NUM_THREADS=1
$ mpiexec -n 8 magic.exe input.nml

input.nml contains all the input informations required to run the code!

Documentation

https://magic-sph.github.io/inputNamelists/namelists.html

Introduction MHD problem Installing and running the code Postprocessing

Input namelist (1/3)

&grid
n_r_max =33, ! Radial resolution
n_cheb_max =31, ! Number of Chebyshev polynomials
n_phi_tot =192, ! Azimuthal resolution
minc =1, ! Azimuthal symmetry

/
&control
mode =0, ! Magnetic, non-magnetic, ...
tag ="test", ! Extension of the output files
n_time_steps=40000, ! Number of timesteps
dtmax =1.0D-4, ! Maximum timestep
runHours =02, ! Run-time
runMinutes =00,

/

Input namelist (2/3)
&phys_param
ra =1.1D5, ! Rayleigh number
ek =1.0D-3, ! Ekman number
pr =1.0D0, ! Prandtl number
prmag =5.0D0 ! Magnetic Prandtl number
radratio =0.35D0, ! Radius ratio r_i/r_o
ktops =1, ! BC: fixed-temperature at the top
ktopv =2, ! BC: rigid wall at the top

/
&start_field
l_start_file=.false., ! Start from a check point?
start_file ="checkpoint_end.start", ! Name of the check point
init_b1 =3, ! Init. mag. field: dipole
amp_b1 =1, ! Amplitude \Lambda=1
init_s1 =0404, ! Init. temperature perturbation
amp_s1 =0.03, ! Amplitude of the init. pert.

/

Introduction MHD problem Installing and running the code Postprocessing

Input namelist (3/3)

&output_control
n_log_step =50, ! Output every n_log_step
n_graphs =3, ! Number of graphic files
n_rsts =1, ! Number of restart files
n_stores =0,
n_specs =1, ! Number of spectra

/
&mantle
nRotMa =0

/
&inner_core
sigma_ratio =1.d0, ! Conducting inner-core
nRotIC =1, ! Rotating inner core

/

Introduction MHD problem Installing and running the code Postprocessing

Outline

1 Introduction

2 MHD problem

3 Installing and running the code

4 Postprocessing

Introduction MHD problem Installing and running the code Postprocessing

log.TAG file

log.TAG provides all the important information about the run:
All parameters and other inputs including default values
Information on parallelization, run time etc
Log of important events: important output files, changing time step, ...
Some important time averaged quantities, measures ...

Documentation

https://magic-sph.github.io/outputFiles/logFile.html#seclogfile

Introduction MHD problem Installing and running the code Postprocessing

Plotting time series

e_kin.TAG is always produced. It contains the time evolution of kinetic energy.
To plot it:

Open ipython and load the python modules
ipython --matplotlib=gtk (or ipython --pylab)
>>> from magic import *
>>> ts = MagicTs(field='e_kin') # Read e_kin.TAG file in $PWD
>>> pdoc MagicTs # Gives you the documentation

Plot the time evolution of magnetic energy
>>> ts = MagicTs(field='e_mag_oc') # Read e_mag_oc.TAG file in $PWD

Manipulate the data
>>> print(ts.time, ts.emagoc_pol)

Documentation

https://magic-sph.github.io/outputFiles/outTimeSeriesStd.html

Introduction MHD problem Installing and running the code Postprocessing

Loading and plotting snapshots

G_#.TAG files contain 3-D arrays on the grid:
Load the G_1.TAG file:

>>> from magic import *
>>> s = Surf(ivar=1)

Plot the radial velocity ur in the equatorial plane:
>>> s.equat(field='vr')

Plot the φ-averaged azimuthal flow uφ:
>>> s.avg(field='vp', cm='seismic', levels=33)

Plot the radial cut of Br at r = 0.75 ro :
>>> s.surf(field='Br', r=0.75) # Hammer projection

Documentation

https://magic-sph.github.io/outputFiles/outGraph.html

Introduction MHD problem Installing and running the code Postprocessing

Data visualisation and post processing
Additional outputs

Plot spectra kin_spec_1.TAG
>>> # Plot kin_spec_1.TAG
>>> sp = MagicSpectrum(field='kin', ispec=1)

Documentation

Plot the time-averaged radial profile of magnetic energy eMagR.TAG
>>> # Plot eMagR.TAG
>>> r = MagicRadial(field='eMagR')

Documentation

And more...
>>> # Movie files (time evolution of 2D slices)
>>> m = Movie()

Documentation

https://magic-sph.github.io/outputFiles/outSpecFiles.html
https://magic-sph.github.io/outputFiles/outRadialFiles.html
https://magic-sph.github.io/outputFiles/outMovie.html

Introduction MHD problem Installing and running the code Postprocessing

Data visualisation and post processing
3-D visualisation with paraview

Requirements

Install a vtk-friendly software: here paraview but VisIt or mayavi should also work
fine.

1 Read the graphic file you want to convert
>>> from magic import MagicGraph
>>> gr = MagicGraph(ivar=1) # Load G_1.TAG

2 Convert it to a file format readable by paraview
>>> # Produce output.vts
>>> Graph2Vtk(gr, filename='output')

3 Load output.vts with paraview
$ paraview output.vts

Documentation

https://magic-sph.github.io/apiPython/toParaview.html

	Introduction
	What for? How?
	Introducting MagIC

	MHD problem
	Fully compressible equations
	From fully compressible to anelastic
	Dimensionless anelastic equations

	Installing and running the code
	Requirements and compilation
	Executing MagIC

	Postprocessing

