The spherical MHD code MagIC

Fundamentals

Thomas Gastine

Institut de Physique du Globe de Paris
6th July 2017

Maglo

Outline

[1 Introduction

- What for? How?
- Introducting MagIC

2 MHD problem

3 Installing and running the code

4 Postprocessing

What for?

Earth's mantle

Solar convective zone

What for?

Earth's core

Jupiter

What for?

Earth's core

Jupiter

Spherical geometry is more natural for studying rotating convection in astrophysical and geophysical objects!

The setup

Rotating spherical shell
Frame of reference rotating with system rotation Ω

Local methods $=$ finite differences, volume, elements?
■ PROS: easier to implement, more straightforward to parallelise, grid refinements possible

- CONS: anisotropic grids, pole instability, problem with vacuum magnetic boundary condition, more points required to get same accuracy

Spectral methods =expansion as complete sets of functions?

- PROS: derivatives easier to calculate with high accuracy, magnetic boundary condition is straightforward, lower number of grid points required
- CONS: parallelisation harder to implement and more communications

To date spectral methods are more suitable!
"Local methods [...] need longer elapsed times than spectral methods to achieve the same accuracy with the same number of processors. Spherical harmonic expansion methods [...] offer the best assurance of efficiency for geodynamo simulations" (Matsui et al. 2016)

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
2 Orszag (1970s): spectral methods in computational fluid dynamics

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a fully spectral code (roughly $\ell=m=8$)

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a fully spectral code (roughly $\ell=m=8$)
4 Glatzmaier \& Gilman (1980): onset of compressible convection in a spherical shell

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a fully spectral code (roughly $\ell=m=8$)
4 Glatzmaier \& Gilman (1980): onset of compressible convection in a spherical shell
5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

Pseudo-spectral? What does it mean?

Pseudo-spectral codes

- The linear terms are expanded as complete sets of functions (e.g. spherical harmonics, Chebyshev polynomials, Fourier functions, ...)
- Nonlinear terms treated in grid space rather than spectral space $=$ numerical transformations between spectral and spatial representations

MagIC heritage

- MagIC simulates rotating fluid dynamics in a spherical shell
- It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
- MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Stucture of the code

Website and documentation

■ Since 2015: MagIC is a hosted on https://github.com/magic-sph/magic

■ Online documentation: https://magic-sph.github.io

Outline

1 Introduction

2 MHD problem
■ Fully compressible equations

- From fully compressible to anelastic
- Dimensionless anelastic equations

3 Installing and running the code

4 Postprocessing

- It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations

A dimensionless formulation of the equations is assumedMagIC is a free software (GPL), written in FortranPost-nrocessing relies on nython librariesPoloidal/toroidal decomposition is employedMagIC uses spherical harmonic decomposition in the angular directionsChebyshev nolynomials or finite differences are employed in the radial direction

- MaglC uses a mixed implicit/explicit time stepping scheme
\square The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Equation of motion for a compressible fluid

Continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0
$$

Navier Stokes equation:

$$
\rho\left(\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+2 \boldsymbol{\Omega} \times \boldsymbol{u}\right)=-\nabla p+\rho \boldsymbol{g}+\frac{1}{\mu_{0}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}+\nabla \cdot \mathrm{S}
$$

with the rate-of-strain tensor expressed by

$$
\mathrm{S}_{i j}=\nu \rho\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \nabla \cdot \boldsymbol{u}\right)
$$

$$
\rho T\left(\frac{\partial s}{\partial t}+\boldsymbol{u} \cdot \nabla s\right)=\nabla \cdot\left(k_{T} \nabla T\right)+\Phi_{\nu}+\lambda(\nabla \times B)^{2}+\epsilon_{T}
$$

with the viscous heating Φ_{ν} expressed by

$$
\Phi_{\nu}=2 \rho\left[e_{i j} e_{j i}-\frac{1}{3}(\boldsymbol{\nabla} \cdot \boldsymbol{u})^{2}\right]
$$

If in addition to that, compositional changes are also considered another equation for the chemical composition ξ reads

$$
\rho\left(\frac{\partial \xi}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \xi\right)=\boldsymbol{\nabla} \cdot\left(k_{\xi} \boldsymbol{\nabla} \xi\right)+\epsilon_{\xi}
$$

Non-relativistic Maxwell equations provide

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B}-\lambda \boldsymbol{\nabla} \times \boldsymbol{B})
$$

with $\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$
When λ is homogeneous, one simply gets

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B})+\lambda \boldsymbol{\Delta} \boldsymbol{B}
$$

Equation of state

In general:

$$
p=f(\rho, T, \xi)
$$

or

$$
\frac{1}{\rho} \partial \rho=-\alpha \partial T+\beta \partial p+\delta \partial \xi
$$

where
Thermal expansivity: $\alpha=-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{\xi, p}$
Compressibillity: $\beta=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial p}\right)_{\xi, \rho}$
Chemical coefficient: $\delta=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial \xi}\right)_{p, \rho}$

MHD equations

MagIC either uses the anelastic or the Boussinesq approximation of the Navier Stokes equation

Anelastic approximation $=$ small disturbance (prime) around an adiabatic reference state (tilde):

$$
\epsilon \sim \frac{s^{\prime}}{c_{p}} \sim \frac{T^{\prime}}{\tilde{T}} \sim \frac{\rho^{\prime}}{\tilde{\rho}} \sim \frac{p^{\prime}}{\tilde{p}} \sim \frac{\xi^{\prime}}{\tilde{\xi}}
$$

The reference state is hydrostatic, adiabatic, and non magnetic:

$$
\nabla \tilde{p}=\tilde{\rho} \boldsymbol{g} ; \quad \nabla \tilde{T}=\frac{\alpha \tilde{T}}{c_{p}} \boldsymbol{g} ; \quad \nabla \tilde{\xi}=0
$$

Anelastic continuity equation

Using $\rho=\tilde{\rho}+\rho^{\prime}$ yields

$$
\underbrace{\frac{\partial \tilde{\rho}}{\partial t}}_{=0}+\frac{\partial \rho^{\prime}}{\partial t}+\boldsymbol{\nabla} \cdot(\tilde{\rho} \boldsymbol{u})+\underbrace{\boldsymbol{\nabla} \cdot\left(\rho^{\prime} \boldsymbol{u}\right)}_{\mathcal{O}\left(\epsilon^{2}\right)}=0
$$

Estimate of the ratio

$$
\frac{\partial \rho^{\prime} / \partial t}{\nabla \cdot(\tilde{\rho} \boldsymbol{u})} \sim \frac{\rho^{\prime}}{\tilde{\rho}} \sim \epsilon
$$

The first order anelastic equation thus reads

$$
\boldsymbol{\nabla} \cdot(\tilde{\rho} \boldsymbol{u})=0
$$

Anelastic equations

Navier-Stokes equation:

$$
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+2 \boldsymbol{\Omega} \times \boldsymbol{u}=-\boldsymbol{\nabla} \frac{p^{\prime}}{\tilde{\rho}}-\frac{\tilde{\alpha} \tilde{T}}{c_{p}} s^{\prime} \boldsymbol{g}+\frac{1}{\mu_{0} \tilde{\rho}}(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}+\frac{1}{\tilde{\rho}} \boldsymbol{\nabla} \cdot \mathrm{~S}
$$

Energy equation:

$$
\tilde{\rho} \tilde{T}\left(\frac{\partial s^{\prime}}{\partial t}+\boldsymbol{u} \cdot \nabla s^{\prime}\right)=\boldsymbol{\nabla} \cdot\left(k_{T} \nabla T^{\prime}\right)+\Phi_{\nu}+\lambda(\nabla \times B)^{2}+\epsilon_{T}
$$

Induction equation:

$$
\frac{\partial \boldsymbol{B}}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B}-\lambda \boldsymbol{\nabla} \times \boldsymbol{B})
$$

Boundary conditions

■ Mechanical boundary conditions:
Stress-free: $\boldsymbol{n} \times(\mathrm{S} \cdot \boldsymbol{n})=\mathbf{0}, \quad$ or no-slip: $\boldsymbol{u}=\mathbf{0}, \quad r=r_{i}, r_{0}$
■ Magnetic boundary conditions:

$$
\text { Vacuum: } \boldsymbol{\Delta} B=\mathbf{0}, \quad r=r_{i}, r_{o}
$$

■ Thermal boundary conditions:
Flux: $\frac{\partial T^{\prime}}{\partial r}=0, \quad$ or temperature: $T^{\prime}=0, \quad r=r_{i}, r_{o}$
\square MagIC simulates rotating fluid dynamics in a spherical shell

- It solves for the coupled evolution of Navier-Stokes equation. MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employec
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
\square MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

A dimensionless formulation of the anelastic MHD equation

MHD equations

MagIC uses a dimensionless form of the anelastic MHD equations
In MagIC, the viscous diffusion time is assumed to be the reference timescale and the spherical shell gap the reference lengthscale:

$$
\begin{array}{r}
{[\tilde{\rho}]=\tilde{\rho}\left(r=r_{o}\right) ; \quad[\tilde{T}]=\tilde{T}\left(r=r_{o}\right) ; \quad[r]=r_{o}-r_{i} ;} \\
{[t]=\frac{d^{2}}{\nu} ; \quad[u]=\frac{\nu}{d} ; \quad[B]=\sqrt{\mu_{0} \lambda \tilde{\rho} \Omega} ; \quad\left[p^{\prime}\right]=\tilde{\rho}\left(r=r_{o}\right) \frac{\nu^{2}}{d^{2}}}
\end{array}
$$

This implies that the velocity is expressed in Reynolds number unit, and the magnetic field in Elsasser number unit.

Dimensionless anelastic MHD equations

In the case of an ideal gas with homogeneous kinematic viscosity ν, thermal diffusivity κ and magnetic diffusivity λ, one gets:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot(\tilde{\rho} \boldsymbol{u}) & =0 \\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0 \\
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}+\frac{2}{E} \boldsymbol{e}_{\boldsymbol{z}} \times \boldsymbol{u} & =-\boldsymbol{\nabla} \frac{p^{\prime}}{\tilde{\rho}}+\frac{R a}{P r} g(r) s^{\prime} \boldsymbol{e}_{\boldsymbol{r}}+\frac{1}{\tilde{\rho} E P m}(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}+\frac{1}{\tilde{\rho}} \boldsymbol{\nabla} \cdot \mathrm{~S} \\
\frac{\partial \boldsymbol{B}}{\partial t} & =\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B})+\frac{1}{P m} \boldsymbol{\Delta} \boldsymbol{B} \\
\tilde{\rho} \tilde{T}\left(\frac{\partial s^{\prime}}{\partial t}+\boldsymbol{u} \cdot \nabla s^{\prime}\right) & =\frac{1}{P r} \boldsymbol{\nabla} \cdot\left(\tilde{\rho} \boldsymbol{\nabla} T^{\prime}\right)+\frac{D i P r}{R a}\left[\Phi_{\nu}+\frac{1}{P m^{2} E}(\boldsymbol{\nabla} \times B)^{2}\right]
\end{aligned}
$$

N.B. In case of compositional convection, another equation and two additional control parameters are required.

Dimensionless Boussinesq MHD equations

In the Boussinesq limit, $D i \rightarrow 0$, then

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{u} & =0 \\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0 \\
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}+\frac{2}{E} \boldsymbol{e}_{\mathbf{z}} \times \boldsymbol{u} & =-\boldsymbol{\nabla} p^{\prime}+\frac{R a}{P r} g(r) T^{\prime} \boldsymbol{e}_{r}+\frac{1}{E P m}(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}+\boldsymbol{\Delta u} \\
\frac{\partial \boldsymbol{B}}{\partial t} & =\boldsymbol{\nabla} \times(\boldsymbol{u} \times \boldsymbol{B})+\frac{1}{P m} \boldsymbol{\Delta} \boldsymbol{B} \\
\frac{\partial T^{\prime}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} T^{\prime} & =\frac{1}{P r} \boldsymbol{\Delta} T^{\prime}
\end{aligned}
$$

From physical properties to dimensionless numbers

Ekman number: $E=\frac{\nu}{\Omega d^{2}}$
Rayleigh number: $R a=\frac{\alpha T_{o} g_{o} d^{3} \Delta s}{c_{p} \nu \kappa}$
Prandtl number: $\operatorname{Pr}=\frac{\nu}{\kappa}$
Magnetic Prandtl number: $\quad P m=\frac{\nu}{\lambda}$
Dissipation number: $\quad D i=\frac{\alpha T_{o} g_{o}}{c_{p}}$

$$
\text { Radius ratio: } \quad \eta=\frac{r_{i}}{r_{o}}
$$

N.B. when $D i \rightarrow 0$, the Boussinesq limit is recovered.

The (astro/geo)physical regime

Parameter	Earth's core	Giant planets	Sun
E	10^{-15}	10^{-18}	10^{-15}
$R a$	10^{27}	10^{30}	10^{24}
$P r$	0.1	0.1	10^{-6}
$P m$	10^{-6}	10^{-7}	10^{-3}
Λ (Lorentz/Coriolis)	1	1	$?$
$R o_{\ell}$ (Inertia/Coriolis)	10^{-2}	10^{-3}	1
$R m$ (adv./diff.)	1000	10^{5}	10^{9}
$R e$ (adv./diff.)	10^{9}	10^{12}	10^{12}

The (astro/geo)physical regime

Parameter	Earth's core	Giant planets	Sun
E	10^{-15}	10^{-18}	10^{-15}
$R a$	10^{27}	10^{30}	10^{24}
$P r$	0.1	0.1	10^{-6}
$P m$	10^{-6}	10^{-7}	10^{-3}
Λ (Lorentz/Coriolis)	1	1	$?$
$R o_{\ell}$ (Inertia/Coriolis)	10^{-2}	10^{-3}	1
$R m$ (adv./diff.)	1000	10^{5}	10^{9}
$R e$ (adv./diff.)	10^{9}	10^{12}	10^{12}

What does it actually implies? Is it possible to reach these parameters with my numerical dynamo model?

Reynolds number: the range of length-scale

$$
\begin{gathered}
\operatorname{Re}=\frac{u_{r m s} d}{\nu}=\frac{d}{\ell_{d}} \quad \text { where } \quad \ell_{d}=\frac{\nu}{u_{r m s}} \\
\ell_{d}=\frac{d}{\operatorname{Re}}
\end{gathered}
$$

Reynolds number: the range of length-scale

$$
\begin{gathered}
\operatorname{Re}=\frac{u_{r m s} d}{\nu}=\frac{d}{\ell_{d}} \quad \text { where } \quad \ell_{d}=\frac{\nu}{u_{r m s}} \\
\ell_{d}=\frac{d}{\operatorname{Re}}
\end{gathered}
$$

- In natural objects, $I_{d} \sim 10^{-9} d$
- In other words, the ratio of the bigger length-scale to the smallest one is 10^{9}.
- You might need 10^{9} grid points in each direction. This implies $R e_{\text {mesh }}=1$.

Ekman number: the range of time-scales

$$
E=\frac{\nu}{\Omega d^{2}}=\frac{P_{\text {rot }}}{\tau_{\nu}} \quad \text { where } \quad \tau_{\nu}=\frac{d^{2}}{\nu}
$$

τ_{ν} is the viscous diffusion time, $P_{r o t}$ the rotation period.

$$
\tau_{\nu}=\frac{P_{r o t}}{E}
$$

Ekman number: the range of time-scales

$$
E=\frac{\nu}{\Omega d^{2}}=\frac{P_{r o t}}{\tau_{\nu}} \quad \text { where } \quad \tau_{\nu}=\frac{d^{2}}{\nu}
$$

τ_{ν} is the viscous diffusion time, $P_{\text {rot }}$ the rotation period.

$$
\tau_{\nu}=\frac{P_{r o t}}{E}
$$

- In natural objects, $\tau_{\nu} \sim 10^{15} P_{\text {rot }}$
- In other words, the ratio of the longest time-scale to the smallest one is 10^{15} !
- You might need 10^{15} time steps to model the problem

Summary

Parameter	Earth's core	Tractable	Hard limit (2015)
E	10^{-15}	$\geq 10^{-6}$	10^{-7}
$R a$	10^{27}	$\leq 10^{12}$	10^{13}
$P r$	0.1	$0.1-10$	1
$P m$	10^{-6}	0.1	6×10^{-2}
Λ (Lorentz/Coriolis)	1	1	1
$R o_{\ell}$ (Inertia/Coriolis)	10^{-2}	$10^{-3}-10^{-1}$	10^{-1}
$R m$ (adv./diff.)	1000	1000	1000
$R e$ (adv./diff.)	10^{9}	$100-1000$	7000

Two complementary approaches

- In the "tractable" regime: parameter studies are possible
- In the "hard-limit" regime, only one single run is possible

Outline

1 Introduction

2 MHD problem

3 Installing and running the code

- Requirements and compilation
- Executing MagIC

4 Postprocessing

- MaglC simulates rotating fluid dynamics in a spherical shell
\square It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed

MagIC is a free software (GPL), written in Fortran

- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev nolynomials or finite differences are employed in the radial direction
- MaglC uses a mixed implicit/explicit time stepping scheme
\square The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

Requirements to compile MagIC

Requirements

Mandatory Fortran and C compilers
Suggested git (https://git-scm.com/) to clone the code repository
Suggested CMake (https://cmake.org) to build the code
Suggested MPI library: rather use intelMPI or MPICH for full support for hybrid MPI/OpenMP
Optional LAPACK or MKL
Optional SHTns for spherical harmonics transforms

Post-processing functions are python based. You need to install the following libraries:
Python libraries required
Mandatory matplotlib (https://matplotlib.org): plotting functions
Mandatory scipy (https://www.scipy.org): scientific libraries
Suggested ipython (https://ipython.org): interactive shell
Optional basemap (https://matplotlib.org/basemap/): additional map projections

Get the code and compile it

1 Install requirements:
\$ module load gcc-6 gfortran-6 libopenmpi cmake git
\$ module load python27 python-scipy ipython python-matplotlib
\square Clone the code from github
\$ git clone https://github.com/magic-sph/magic.git
3 Set-up the environment variables
\$ cd magic
\$ source sourceme.sh \# (or sourceme.csh)
4 Define the Fortran and C compilers
\$ export $\mathrm{FC}=\mathrm{mpif} 90$ \# replace by your compiler
\$ export $\mathrm{CC}=\mathrm{mpicc}$
5 Create a build directory and compile
\$ mkdir build; cd build
\$ cmake \$MAGIC_HOME -DUSE_MPI=yes -DUSE_OMP=no
\$ make -j

MagIC structure

Run MagIC

Run with 8 CPUs:

\$ export OMP_NUM_THREADS=1
\$ mpiexec -n 8 magic.exe input.nml
input.nml contains all the input informations required to run the code!

Input namelist (1/3)

```
&grid
    n_r_max =33, ! Radial resolution
    n_cheb_max =31, ! Number of Chebyshev polynomials
    n_phi_tot =192, ! Azimuthal resolution
    minc =1, ! Azimuthal symmetry
/
&control
    mode =0, ! Magnetic, non-magnetic, ...
    tag ="test", ! Extension of the output files
    n_time_steps=40000, ! Number of timesteps
    dtmax =1.0D-4, ! Maximum timestep
    runHours =02, ! Run-time
    runMinutes =00,
/
```


Input namelist (2/3)

\&phys_param

$$
\begin{array}{lll}
\text { ra } & =1.1 \mathrm{D} 5, \text { ! Rayleigh number } \\
\text { ek } & =1.0 \mathrm{D}-3, \text { Ekman number } \\
\text { pr } & =1.0 \mathrm{DO}, \text { ! Prandtl number } \\
\text { prmag } & =5.0 \mathrm{D} 0 \text { ! Magnetic Prandtl number } \\
\text { radratio } & =0.35 \mathrm{DO}, \text { ! Radius ratio } r_{-} i / r_{-} \\
\text {ktops } & =1, & \text { BC: fixed-temperature at the top } \\
\text { ktopv } & =2, \quad \text { BC: rigid wall at the top }
\end{array}
$$

/
\&start_field

```
l_start_file=.false., ! Start from a check point?
start_file ="checkpoint_end.start", ! Name of the check point
init_b1 =3, ! Init. mag. field: dipole
amp_b1 =1,
init_s1 =0404, ! Init. temperature perturbation
amp_s1 =0.03, ! Amplitude of the init. pert.
```


Input namelist (3/3)

```
&output_control
    n_log_step =50, ! Output every n_log_step
    n_graphs =3, ! Number of graphic files
    n_rsts =1, ! Number of restart files
    n_stores =0,
    n_specs =1, ! Number of spectra
&mantle
    nRotMa =0
/
&inner_core
    sigma_ratio =1.d0, ! Conducting inner-core
    nRotIC =1, ! Rotating inner core
/
```


Outline

1 Introduction

2 MHD problem

3 Installing and running the code

4 Postprocessing
log.TAG provides all the important information about the run:

- All parameters and other inputs including default values
- Information on parallelization, run time etc

■ Log of important events: important output files, changing time step, ...

- Some important time averaged quantities, measures ...
e_kin.TAG is always produced. It contains the time evolution of kinetic energy. To plot it:

■ Open ipython and load the python modules

```
ipython --matplotlib=gtk (or ipython --pylab)
>>> from magic import *
>>> ts = MagicTs(field='e_kin') # Read e_kin.TAG file in $PWD
>>> pdoc MagicTs # Gives you the documentation
```

- Plot the time evolution of magnetic energy

```
>>> ts = MagicTs(field='e_mag_oc') # Read e_mag_oc.TAG file in $PWD
```

- Manipulate the data

```
>>> print(ts.time, ts.emagoc_pol)
```


Loading and plotting snapshots

G_\#.TAG files contain 3-D arrays on the grid:

- Load the G_1.TAG file:

```
>>> from magic import *
>>> s = Surf(ivar=1)
```

■ Plot the radial velocity u_{r} in the equatorial plane:

```
>>> s.equat(field='vr')
```

■ Plot the ϕ-averaged azimuthal flow u_{ϕ} :

```
>>> s.avg(field='vp', cm='seismic', levels=33)
```

- Plot the radial cut of B_{r} at $r=0.75 r_{0}$:

```
>>> s.surf(field='Br', r=0.75) # Hammer projection
```


Data visualisation and post processing

■ Plot spectra kin_spec_1.TAG

```
>>> # Plot kin_spec_1.TAG
>>> sp = MagicSpectrum(field='kin', ispec=1)
```

- Plot the time-averaged radial profile of magnetic energy eMagR.TAG

```
>>> # Plot eMagR.TAG
>>> r = MagicRadial(field='eMagR')
```

- And more...

```
>>> # Movie files (time evolution of 2D slices)
>>> m = Movie()
```


Requirements

Install a vtk-friendly software: here paraview but VisIt or mayavi should also work fine.

1 Read the graphic file you want to convert
>>> from magic import MagicGraph
>>> gr = MagicGraph(ivar=1) \# Load G_1.TAG
2 Convert it to a file format readable by paraview
>>> \# Produce output.vts
>>> Graph2Vtk(gr, filename='output')
3 Load output.vts with paraview
\$ paraview output.vts

