The spherical MHD code MagIC

Fundamentals

Thomas Gastine

Institut de Physique du Globe de Paris

6th July 2017

MHD problem

Installing and running the code

Postprocessing

Outline

1 Introduction

- What for? How?
- Introducting MagIC

2 MHD problem

- 3 Installing and running the code
- 4 Postprocessing

What for?

MHD problem

Installing and running the code

Postprocessing

Earth's mantle

Solar convective zone

What for?

MHD problem

Installing and running the code

Postprocessing

Earth's core

Cassini

Jupiter

What for?

MHD problem

Installing and running the code

Postprocessing

Glatzmaier & Olson (2005)

Earth's core

Jupiter

Spherical geometry is more natural for studying rotating convection in astrophysical and geophysical objects!

The setup

MHD problem

Installing and running the code

Postprocessing

Local methods = finite differences, volume, elements?

- PROS: easier to implement, more straightforward to parallelise, grid refinements possible
- CONS: anisotropic grids, pole instability, problem with vacuum magnetic boundary condition, more points required to get same accuracy

Spectral methods =expansion as complete sets of functions?

- PROS: derivatives easier to calculate with high accuracy, magnetic boundary condition is straightforward, lower number of grid points required
- **CONS**: parallelisation harder to implement and more communications

MHD problem

Installing and running the code

Postprocessing

To date spectral methods are more suitable!

"Local methods [...] need longer elapsed times than spectral methods to achieve the same accuracy with the same number of processors. Spherical harmonic expansion methods [...] offer the best assurance of efficiency for geodynamo simulations" (Matsui et al. 2016)

MHD problem

Installing and running the code

Postprocessing

Some milestones...

Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells

MHD problem

Installing and running the code

Postprocessing

- Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
- **2** Orszag (1970s): spectral methods in computational fluid dynamics

MHD problem

Postprocessing

- Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
- **2** Orszag (1970s): spectral methods in computational fluid dynamics
- **3** Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a fully spectral code (roughly $\ell = m = 8$)

- Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
- **2** Orszag (1970s): spectral methods in computational fluid dynamics
- **3** Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a fully spectral code (roughly $\ell = m = 8$)
- **4 Glatzmaier & Gilman (1980)**: onset of compressible convection in a spherical shell

- Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in spherical shells
- **2** Orszag (1970s): spectral methods in computational fluid dynamics
- **3** Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a fully spectral code (roughly $\ell = m = 8$)
- **4 Glatzmaier & Gilman (1980)**: onset of compressible convection in a spherical shell
- **5** Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry

MHD problem

Installing and running the code

Postprocessing

Pseudo-spectral? What does it mean?

Pseudo-spectral codes

- The linear terms are expanded as complete sets of functions (e.g. spherical harmonics, Chebyshev polynomials, Fourier functions, ...)
- Nonlinear terms treated in grid space rather than spectral space = numerical transformations between spectral and spatial representations

MagIC heritage

MHD problem

Installing and running the code

Postprocessing

MHD problem

Installing and running the code

Postprocessing

MagIC in words

- MagIC simulates rotating fluid dynamics in a spherical shell
- It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
- MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

MHD problem

Installing and running the code

Postprocessing

Stucture of the code

MHD problem

Installing and running the code

Postprocessing

Website and documentation

Since 2015: MagIC is a hosted on https://github.com/magic-sph/magic

a magic-sph / mag	ic			• Watch	11 ★	Star 8	Ŷ Fork	2
<> Code ① Issue	(2)) Pull requests (0)	III Projects 0	Insights 👻					
vlagIC is a high-perfor sph.github.io/	mance code that solves the r	nagneto-hydrody	namics equations in ro	tating spherical s	hells https:	//magic-		
🕝 784 com	its P6	branches	©7 rele	ases	11	7 contribu	itors	
Branch: master + Ner	v pull request				Find fil	Clone	or downloa	ud 🕶
igastine fix auto-cor	fig when both f2py2 and f2py3 cos	xist			Latest cor	nmit 331b5	98 an hour	ago
iii bin	fix auto-config when both	2py2 and f2py3 co	pexist 💧	•			an hour a	ago
Cmake	Moved common openmp f	ags to the top					14 days a	ago
doc	fix picture				4 days a	ago		
icense license	- merge the python subro	utines into the MPI	version (latest version)				2 years a	ago
python/magic	Merge branch 'master' of	https://github.com/	magic-sph/magic				4 days a	ago
samples	fix unit for Graphic output						15 days a	ago
iin src	fix one compiler warning						3 dave :	ano

Online documentation: https://magic-sph.github.io

MHD problem

Installing and running the code

Postprocessing

Outline

1 Introduction

2 MHD problem

- Fully compressible equations
- From fully compressible to anelastic
- Dimensionless anelastic equations

3 Installing and running the code

4 Postprocessing

MagIC simulates rotating fluid dynamics in a spherical shell

- It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions.
- Chebyshev polynomials or finite differences are employed in the radial direction
- MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

MHD problem

Installing and running the code

Postprocessing

Equation of motion for a compressible fluid

Continuity equation

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{u}) = \boldsymbol{0}$$

Navier Stokes equation:

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u}\right) = -\boldsymbol{\nabla} \boldsymbol{p} + \rho \, \boldsymbol{g} + \frac{1}{\mu_0} \left(\boldsymbol{\nabla} \times \boldsymbol{B}\right) \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot \boldsymbol{S}$$

with the rate-of-strain tensor expressed by

$$\mathsf{S}_{ij} = \nu \rho \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \, \boldsymbol{\nabla} \cdot \boldsymbol{u} \right)$$

MHD problem

Installing and running the code

Postprocessing

Energy equation for a compressible fluid

$$\rho T\left(\frac{\partial s}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} s\right) = \boldsymbol{\nabla} \cdot (\boldsymbol{k}_{T} \boldsymbol{\nabla} T) + \boldsymbol{\Phi}_{\nu} + \lambda \left(\boldsymbol{\nabla} \times B\right)^{2} + \epsilon_{T}$$

with the viscous heating Φ_{ν} expressed by

$$\Phi_{
u} = 2
ho\left[e_{ij}e_{ji} - rac{1}{3}(oldsymbol{
abla}\cdotoldsymbol{u})^2
ight]$$

If in addition to that, compositional changes are also considered another equation for the chemical composition ξ reads

$$\rho\left(\frac{\partial\xi}{\partial t}+\boldsymbol{u}\cdot\boldsymbol{\nabla}\xi\right)=\boldsymbol{\nabla}\cdot(\boldsymbol{k}_{\xi}\boldsymbol{\nabla}\xi)+\epsilon_{\xi}$$

Induction equation

MHD problem

Installing and running the code

Postprocessing

Non-relativistic Maxwell equations provide

$$rac{\partial oldsymbol{B}}{\partial t} = oldsymbol{
abla} imes (oldsymbol{u} imes oldsymbol{B} - \lambda oldsymbol{
abla} imes oldsymbol{B})$$

with $\nabla \cdot \boldsymbol{B} = 0$ When λ is homogeneous, one simply gets

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \lambda \boldsymbol{\Delta} \boldsymbol{B}$$

MHD problem

Installing and running the code

(~)

Postprocessing

Equation of state

In general:

$$p = f(\rho, T, \xi)$$

or

$$\frac{1}{\rho}\partial\rho = -\alpha\,\partial\,T + \beta\,\partial\rho + \delta\partial\xi$$

where

Thermal expansivity:
$$\alpha = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{\xi,\rho}$$

Compressibillity: $\beta = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial \rho} \right)_{\xi,\rho}$
Chemical coefficient: $\delta = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial \xi} \right)_{\rho,\rho}$

MHD problem

Installing and running the code

Postprocessing

From fully compressible to anelastic and Boussinesq Reference state

MHD equations

MagIC either uses the **anelastic** or the **Boussinesq** approximation of the Navier Stokes equation

Anelastic approximation = small disturbance (prime) around an **adiabatic** reference state (tilde):

$$\epsilon \sim rac{s'}{c_{m{p}}} \sim rac{{\cal T}'}{{ ilde {\cal T}}} \sim rac{
ho'}{{ ilde {
ho}}} \sim rac{{m{p}'}}{{ ilde {m{
ho}}}} \sim rac{{m{\xi}'}}{{ ilde {m{\xi}}}}$$

The reference state is hydrostatic, adiabatic, and non magnetic:

$$\boldsymbol{\nabla} \tilde{\boldsymbol{p}} = \tilde{\rho} \, \boldsymbol{g}; \quad \boldsymbol{\nabla} \tilde{\boldsymbol{T}} = \frac{\alpha \, \tilde{\boldsymbol{T}}}{c_{\boldsymbol{p}}} \boldsymbol{g}; \quad \boldsymbol{\nabla} \tilde{\boldsymbol{\xi}} = 0$$

MHD problem

Installing and running the code

Postprocessing

Anelastic continuity equation

Using $\rho = \tilde{\rho} + \rho'$ yields

$$\underbrace{\frac{\partial \tilde{\rho}}{\partial t}}_{=0} + \frac{\partial \rho'}{\partial t} + \nabla \cdot (\tilde{\rho} \boldsymbol{u}) + \underbrace{\nabla \cdot (\rho' \boldsymbol{u})}_{\mathcal{O}(\epsilon^2)} = 0$$

Estimate of the ratio

$$rac{\partial
ho' / \partial t}{oldsymbol
abla \cdot (ilde{
ho} oldsymbol u)} \sim rac{
ho'}{ ilde{
ho}} \sim \epsilon$$

The first order anelastic equation thus reads

$$oldsymbol{
abla} \cdot (ilde{
ho}oldsymbol{u}) = 0$$

MHD problem

Installing and running the code

Postprocessing

Anelastic equations

Navier-Stokes equation:

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u} = -\boldsymbol{\nabla} \frac{p'}{\tilde{\rho}} - \frac{\tilde{\alpha} \tilde{T}}{c_{\rho}} \boldsymbol{s}' \boldsymbol{g} + \frac{1}{\mu_0 \tilde{\rho}} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} + \frac{1}{\tilde{\rho}} \boldsymbol{\nabla} \cdot \boldsymbol{S}$$

Energy equation:

$$\tilde{\rho}\tilde{T}\left(\frac{\partial s'}{\partial t}+\boldsymbol{u}\cdot\boldsymbol{\nabla}s'\right)=\boldsymbol{\nabla}\cdot\left(\boldsymbol{k}_{T}\boldsymbol{\nabla}T'\right)+\boldsymbol{\Phi}_{\nu}+\lambda\left(\boldsymbol{\nabla}\times\boldsymbol{B}\right)^{2}+\epsilon_{T}$$

Induction equation:

$$rac{\partial oldsymbol{B}}{\partial t} = oldsymbol{
abla} imes (oldsymbol{u} imes oldsymbol{B} - \lambda oldsymbol{
abla} imes oldsymbol{B})$$

MHD problem

Installing and running the code

Postprocessing

Boundary conditions

Mechanical boundary conditions:

Stress-free: $\mathbf{n} \times (\mathbf{S} \cdot \mathbf{n}) = \mathbf{0}$, or no-slip: $\mathbf{u} = \mathbf{0}$, $r = r_i, r_o$

Magnetic boundary conditions:

Vacuum:
$$oldsymbol{\Delta} oldsymbol{B} = oldsymbol{0}, \quad r = r_i, r_o$$

Thermal boundary conditions:

Flux:
$$\frac{\partial T'}{\partial r} = 0$$
, or temperature: $T' = 0$, $r = r_i, r_o$

MagIC simulates rotating fluid dynamics in a spherical shell

It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations

A dimensionless formulation of the equations is assumed

- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
- MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

MHD problem

Installing and running the code

Postprocessing

A dimensionless formulation of the anelastic MHD equation

MHD equations

MagIC uses a dimensionless form of the anelastic MHD equations

In MagIC, the viscous diffusion time is assumed to be the **reference timescale** and the spherical shell gap the **reference lengthscale**:

$$[\tilde{\rho}] = \tilde{\rho}(r = r_o); \quad [\tilde{T}] = \tilde{T}(r = r_o); \quad [r] = r_o - r_i;$$
$$[t] = \frac{d^2}{\nu}; \quad [u] = \frac{\nu}{d}; \quad [B] = \sqrt{\mu_0 \lambda \tilde{\rho} \Omega}; \quad [p'] = \tilde{\rho}(r = r_o) \frac{\nu^2}{d^2}$$

This implies that the velocity is expressed in **Reynolds number** unit, and the magnetic field in **Elsasser number** unit.

MHD problem

Installing and running the code

Postprocessing

Dimensionless anelastic MHD equations

In the case of an ideal gas with homogeneous kinematic viscosity ν , thermal diffusivity κ and magnetic diffusivity λ , one gets:

$$\nabla \cdot (\tilde{\rho}\boldsymbol{u}) = 0$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \frac{2}{\boldsymbol{E}} \boldsymbol{e}_{\boldsymbol{z}} \times \boldsymbol{u} = -\nabla \frac{\boldsymbol{p}'}{\tilde{\rho}} + \frac{\boldsymbol{R}_{\boldsymbol{a}}}{\boldsymbol{P}_{\boldsymbol{r}}} \boldsymbol{g}(\boldsymbol{r}) \, \boldsymbol{s}' \, \boldsymbol{e}_{\boldsymbol{r}} + \frac{1}{\tilde{\rho} \, \boldsymbol{E} \, \boldsymbol{P}_{\boldsymbol{m}}} \left(\nabla \times \boldsymbol{B} \right) \times \boldsymbol{B} + \frac{1}{\tilde{\rho}} \nabla \cdot \boldsymbol{S}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{1}{\boldsymbol{P}_{\boldsymbol{m}}} \boldsymbol{\Delta} \boldsymbol{B}$$

$$\tilde{\rho} \tilde{T} \left(\frac{\partial \boldsymbol{s}'}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{s}' \right) = \frac{1}{\boldsymbol{P}_{\boldsymbol{r}}} \nabla \cdot \left(\tilde{\rho} \nabla T' \right) + \frac{\boldsymbol{D} \boldsymbol{i} \, \boldsymbol{P}_{\boldsymbol{r}}}{\boldsymbol{R}_{\boldsymbol{a}}} \left[\Phi_{\nu} + \frac{1}{\boldsymbol{P} \boldsymbol{m}^{2} \, \boldsymbol{E}} \left(\nabla \times \boldsymbol{B} \right)^{2} \right]$$

N.B. In case of compositional convection, another equation and two additional control parameters are required.

MHD problem

Installing and running the code

Postprocessing

Dimensionless Boussinesq MHD equations

In the Boussinesq limit, $Di \rightarrow 0$, then

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \frac{2}{E} \boldsymbol{e}_{\boldsymbol{z}} \times \boldsymbol{u} = -\nabla \boldsymbol{p}' + \frac{Ra}{Pr} \boldsymbol{g}(r) T' \boldsymbol{e}_{r} + \frac{1}{E Pm} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \Delta \boldsymbol{u}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{B}) + \frac{1}{Pm} \Delta \boldsymbol{B}$$

$$\frac{\partial T'}{\partial t} + \boldsymbol{u} \cdot \nabla T' = \frac{1}{Pr} \Delta T'$$

MHD problem

Installing and running the code

Postprocessing

From physical properties to dimensionless numbers

Ekman number:
$$E = \frac{\nu}{\Omega d^2}$$
Rayleigh number: $Ra = \frac{\alpha T_o g_o d^3 \Delta s}{c_p \nu \kappa}$ Prandtl number: $Pr = \frac{\nu}{\kappa}$ Magnetic Prandtl number: $Pm = \frac{\nu}{\lambda}$ Dissipation number: $Di = \frac{\alpha T_o g_o}{c_p}$ Radius ratio: $\eta = \frac{r_i}{r_o}$

N.B. when $Di \rightarrow 0$, the Boussinesq limit is recovered.

MHD problem

The (astro/geo)physical regime

Parameter	Earth's core	Giant planets	Sun
E	10^{-15}	10^{-18}	10^{-15}
Ra	10 ²⁷	10 ³⁰	10^{24}
Pr	0.1	0.1	10^{-6}
Pm	10^{-6}	10^{-7}	10^{-3}
Λ (Lorentz/Coriolis)	1	1	?
Ro_ℓ (Inertia/Coriolis)	10^{-2}	10^{-3}	1
Rm (adv./diff.)	1000	10 ⁵	10^{9}
<i>Re</i> (adv./diff.)	10 ⁹	10 ¹²	10^{12}

MHD problem

Installing and running the code

Postprocessing

The (astro/geo)physical regime

Parameter	Earth's core	Giant planets	Sun
E	10^{-15}	10^{-18}	10^{-15}
Ra	10 ²⁷	10 ³⁰	10^{24}
Pr	0.1	0.1	10^{-6}
Pm	10^{-6}	10^{-7}	10^{-3}
Λ (Lorentz/Coriolis)	1	1	?
Ro_ℓ (Inertia/Coriolis)	10^{-2}	10^{-3}	1
Rm (adv./diff.)	1000	10 ⁵	10^{9}
<i>Re</i> (adv./diff.)	10 ⁹	10 ¹²	10^{12}

What does it actually implies? Is it possible to reach these parameters with my numerical dynamo model?

MHD problem

Installing and running the code

Postprocessing

Reynolds number: the range of length-scale

$$Re = rac{u_{rms} d}{
u} = rac{d}{\ell_d}$$
 where $\ell_d = rac{
u}{u_{rms}}$
 $\ell_d = rac{d}{Re}$

MHD problem

Installing and running the code

Postprocessing

Reynolds number: the range of length-scale

$$Re = rac{u_{rms}\,d}{
u} = rac{d}{\ell_d} \quad ext{where} \quad \ell_d = rac{
u}{u_{rms}}$$
 $\ell_d = rac{d}{Re}$

- In natural objects, $I_d \sim 10^{-9} d$
- In other words, the ratio of the bigger length-scale to the smallest one is 10^9 .
- You might need 10^9 grid points in each direction. This implies $Re_{mesh} = 1$.

MHD problem

Installing and running the code

Postprocessing

Ekman number: the range of time-scales

$$E = rac{
u}{\Omega \, d^2} = rac{P_{rot}}{ au_
u} \quad ext{where} \quad au_
u = rac{d^2}{
u}$$

 τ_{ν} is the viscous diffusion time, $\textit{P}_{\textit{rot}}$ the rotation period.

$$\tau_{\nu} = \frac{P_{rot}}{E}$$

MHD problem

Installing and running the code

Postprocessing

Ekman number: the range of time-scales

$$E = rac{
u}{\Omega \, d^2} = rac{P_{rot}}{ au_
u} \quad ext{where} \quad au_
u = rac{d^2}{
u}$$

 τ_{ν} is the viscous diffusion time, ${\it P_{rot}}$ the rotation period.

$$\tau_{\nu} = \frac{P_{rot}}{E}$$

- \blacksquare In natural objects, $\tau_{\nu} \sim 10^{15} \, \textit{P}_{rot}$
- In other words, the ratio of the longest time-scale to the smallest one is 10^{15} !
- You might need 10¹⁵ time steps to model the problem

troduction	MHD problem ○○○○○○○○○○○○○○○		Installing and runnir	Postproces	
ummary	,				
	Parameter	Earth's core	Tractable	Hard limit (2015)	
-	Е	10^{-15}	$\geq 10^{-6}$	10 ⁻⁷	
	Ra	10 ²⁷	$\leq 10^{12}$	10 ¹³	
	Pr	0.1	0.1-10	1	
	Pm	10^{-6}	0.1	$6 imes 10^{-2}$	
	Λ (Lorentz/Coriolis)	1	1	1	
	Ro_ℓ (Inertia/Coriolis)	10^{-2}	$10^{-3} - 10^{-1}$	10^{-1}	
	Rm (adv./diff.)	1000	1000	1000	
	<i>Re</i> (adv./diff.)	10^{9}	100-1000	7000	

Two complementary approaches

C

- In the "tractable" regime: parameter studies are possible
- In the "hard-limit" regime, only one single run is possible

MHD problem

Installing and running the code

Postprocessing

1 Introduction

2 MHD problem

- 3 Installing and running the code
 - Requirements and compilation
 - Executing MagIC

4 Postprocessing

- MagIC simulates rotating fluid dynamics in a spherical shell
- It solves for the coupled evolution of Navier-Stokes equation, MHD equation, temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations
- A dimensionless formulation of the equations is assumed
- MagIC is a free software (GPL), written in Fortran
- Post-processing relies on python libraries
- Poloidal/toroidal decomposition is employed
- MagIC uses spherical harmonic decomposition in the angular directions
- Chebyshev polynomials or finite differences are employed in the radial direction
- MagIC uses a mixed implicit/explicit time stepping scheme
- The code relies on a hybrid parallelisation scheme (MPI/OpenMP)

MHD problem

Installing and running the code

Postprocessing

Requirements to compile MagIC

Requirements

Mandatory Fortran and C compilers

Suggested git (https://git-scm.com/) to clone the code repository

Suggested CMake (https://cmake.org) to build the code

Suggested MPI library: rather use intelMPI or MPICH for full support for hybrid MPI/OpenMP

Optional LAPACK or MKL

Optional SHTns for spherical harmonics transforms

MHD problem

Installing and running the code $0 \bullet 0 \circ 0 \circ 0 \circ 0$

Postprocessing

Data visualisation and post processing Requirements

Post-processing functions are python based. You need to install the following libraries:

Python libraries required

Mandatory matplotlib (https://matplotlib.org): plotting functions
Mandatory scipy (https://www.scipy.org): scientific libraries
Suggested ipython (https://ipython.org): interactive shell
Optional basemap (https://matplotlib.org/basemap/): additional map
projections

MHD problem

Installing and running the code

Postprocessing

Get the code and compile it

1 Install requirements:

- \$ module load gcc-6 gfortran-6 libopenmpi cmake git
- \$ module load python27 python-scipy ipython python-matplotlib

2 Clone the code from github

\$ git clone https://github.com/magic-sph/magic.git

3 Set-up the environment variables

```
$ cd magic
```

\$ source sourceme.sh # (or sourceme.csh)

4 Define the Fortran and C compilers

- \$ export FC=mpif90 # replace by your compiler
- \$ export CC=mpicc

5 Create a build directory and compile

- \$ mkdir build; cd build
- \$ cmake \$MAGIC_HOME -DUSE_MPI=yes -DUSE_OMP=no
- \$ make -j

MHD problem

Installing and running the code $\circ\circ\circ\bullet\circ\circ\circ\circ$

Postprocessing

Run MagIC

MHD problem

Installing and running the code $\circ\circ\circ\circ\bullet\circ\circ\circ$

Postprocessing

Run with 8 CPUs:

- \$ export OMP_NUM_THREADS=1
- \$ mpiexec -n 8 magic.exe input.nml

input.nml contains all the input informations required to run the code!

Documentation

MHD problem

Installing and running the code $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Postprocessing

&grid

Input namelist (1/3)

n_r_max	=33, !	Radial resolution
n_cheb_max	=31, !	Number of Chebyshev polynomials
n_phi_tot	=192, !	Azimuthal resolution
minc	=1, <i>!</i>	Azimuthal symmetry
/		
&control		
mode	=0,	! Magnetic, non-magnetic,
tag	="test",	! Extension of the output files
n_time_steps	s=40000,	! Number of timesteps
dtmax	=1.0D-4,	! Maximum timestep
runHours	=02,	! Run-time
runMinutes	=00,	
/		

Input namelist (2/3)

&phys_param

ra	=1.1D5 ,	!	Rayleigh numbe	r					
ek	=1.0D-3,	!	Ekman number	Ekman number					
pr	=1.0D0,	!	Prandtl number	•					
prmag	=5.0D0	!	Magnetic Prand	lt	l number				
radratio	=0.35D0,	!	Radius ratio r	2	i/r_o				
ktops	=1,	!	BC: fixed-temp	e	rature at the top				
ktopv	=2,	!	BC: rigid wall	, (at the top				
/									
&start_field									
l_start_fil	e=.false.	,		!	Start from a check point?				
start_file	="checkpo	oi	nt_end.start",	!	Name of the check point				
init_b1	=3,			!	Init. mag. field: dipole				
amp_b1	=1,			!	Amplitude \Lambda=1				
init_s1	=0404,			!	Init. temperature perturbation				
amp_s1	=0.03,			!	Amplitude of the init. pert.				

MHD problem

Installing and running the code $\circ\circ\circ\circ\circ\circ\circ\bullet$

Postprocessing

Input namelist (3/3)

&output_conti	rol				
n_log_step	=50,	!	Output	eve	ery n_log_step
n_graphs	=3,	!	Number	of	graphic files
n_rsts	=1,	!	Number	of	restart files
n_stores	=0,				
n_specs	=1,	!	Number	of	spectra
/					
&mantle					
nRotMa	=0				
/					
&inner_core					
sigma_ratio	=1.d0,	!	Conduc	ctir	ng inner-core
nRotIC	=1,	!	Rotati	ing	inner core
/					

MHD problem

Installing and running the code

Postprocessing

1 Introduction

- 2 MHD problem
- 3 Installing and running the code

4 Postprocessing

log.TAG file

$\log. {\tt TAG}$ provides all the important information about the run:

- All parameters and other inputs including default values
- Information on parallelization, run time etc
- Log of important events: important output files, changing time step, ...
- Some important time averaged quantities, measures ...

MHD problem

Installing and running the code

Postprocessing

Plotting time series

 $e_kin.TAG$ is always produced. It contains the time evolution of kinetic energy. To plot it:

Open ipython and load the python modules

ipython --matplotlib=gtk (or ipython --pylab)

- >>> from magic import *
- >>> ts = MagicTs(field='e_kin') # Read e_kin.TAG file in \$PWD
- >>> pdoc MagicTs # Gives you the documentation
- Plot the time evolution of magnetic energy

>>> ts = MagicTs(field='e_mag_oc') # Read e_mag_oc.TAG file in \$PWD

Manipulate the data

>>> print(ts.time, ts.emagoc_pol)

MHD problem

Installing and running the code

Postprocessing

Loading and plotting snapshots

G_#.TAG files contain 3-D arrays on the grid:

- Load the G_1.TAG file:
 - >>> from magic import *
 - >>> s = Surf(ivar=1)
- Plot the radial velocity u_r in the equatorial plane:

>>> s.equat(field='vr')

■ Plot the ϕ -averaged azimuthal flow u_{ϕ} :

>>> s.avg(field='vp', cm='seismic', levels=33)

• Plot the radial cut of B_r at $r = 0.75 r_o$:

>>> s.surf(field='Br', r=0.75) # Hammer projection

MHD problem

Installing and running the code

Postprocessing 000●0

Data visualisation and post processing Additional outputs

- Plot spectra kin_spec_1.TAG
 - >>> # Plot kin_spec_1.TAG
 - >>> sp = MagicSpectrum(field='kin', ispec=1)
- Plot the time-averaged radial profile of magnetic energy eMagR.TAG

>>> # Plot eMagR.TAG
>>> r = MagicRadial(field='eMagR')

Documentation

And more...

>>> # Movie files (time evolution of 2D slices)
>>> m = Movie()

MHD problem

Installing and running the code

Postprocessing 0000●

Data visualisation and post processing 3-D visualisation with paraview

Requirements

Install a vtk-friendly software: here paraview but VisIt or mayavi should also work fine.

- Read the graphic file you want to convert >>> from magic import MagicGraph >>> gr = MagicGraph(ivar=1) # Load G_1.TAG
 Convert it to a file format readable by paraview >>> # Produce output.vts >>> Graph2Vtk(gr, filename='output')
- 3 Load output.vts with paraview
 - \$ paraview output.vts