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Spherical geometry is more natural for studying rotating convection in
astrophysical and geophysical objects!
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astrophysical and geophysical objects!
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The setup

Rotating spherical shell
Frame of reference rotating with system rotation Ω
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How?

Local methods = finite differences, volume, elements?

PROS: easier to implement, more straightforward to parallelise, grid refinements
possible
CONS: anisotropic grids, pole instability, problem with vacuum magnetic boundary
condition, more points required to get same accuracy
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How?

Spectral methods =expansion as complete sets of functions?

PROS: derivatives easier to calculate with high accuracy, magnetic boundary con-
dition is straightforward, lower number of grid points required
CONS: parallelisation harder to implement and more communications



Introduction MHD problem Installing and running the code Postprocessing

How?

To date spectral methods are more suitable!

“Local methods [...] need longer elapsed times than spectral methods to achieve the same
accuracy with the same number of processors. Spherical harmonic expansion methods
[...] offer the best assurance of efficiency for geodynamo simulations” (Matsui et al.
2016)
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Some milestones...

1 Chandrasekhar (1960s): poloidal/toroidal decomposition, onset of convection in
spherical shells

2 Orszag (1970s): spectral methods in computational fluid dynamics
3 Young (1974): finite-amplitude convection in a Boussinesq spherical shell using a

fully spectral code (roughly ` = m = 8)
4 Glatzmaier & Gilman (1980): onset of compressible convection in a spherical

shell
5 Glatzmaier (1984): pseudo-spectral MHD code in a spherical shell geometry
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Pseudo-spectral? What does it mean?

Pseudo-spectral codes

The linear terms are expanded as complete sets of functions (e.g. spherical
harmonics, Chebyshev polynomials, Fourier functions, ...)
Nonlinear terms treated in grid space rather than spectral space = numerical
transformations between spectral and spatial representations
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MagIC heritage
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MagIC in words

MagIC simulates rotating fluid dynamics in a spherical shell
It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
perature (or entropy) equation and an equation for chemical composition under both
the anelastic and the Boussinesq approximations
A dimensionless formulation of the equations is assumed
MagIC is a free software (GPL), written in Fortran
Post-processing relies on python libraries
Poloidal/toroidal decomposition is employed
MagIC uses spherical harmonic decomposition in the angular directions
Chebyshev polynomials or finite differences are employed in the radial direction
MagIC uses a mixed implicit/explicit time stepping scheme
The code relies on a hybrid parallelisation scheme (MPI/OpenMP)
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Stucture of the code
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Website and documentation

Since 2015: MagIC is a hosted on https://github.com/magic-sph/magic

Online documentation: https://magic-sph.github.io

https://github.com/magic-sph/magic
https://magic-sph.github.io
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� MagIC simulates rotating fluid dynamics in a spherical shell
� It solves for the coupled evolution of Navier-Stokes equation, MHD

equation, temperature (or entropy) equation and an equation for
chemical composition under both the anelastic and the Boussinesq
approximations

� A dimensionless formulation of the equations is assumed
� MagIC is a free software (GPL), written in Fortran
� Post-processing relies on python libraries
� Poloidal/toroidal decomposition is employed
� MagIC uses spherical harmonic decomposition in the angular directions
� Chebyshev polynomials or finite differences are employed in the radial direction
� MagIC uses a mixed implicit/explicit time stepping scheme
� The code relies on a hybrid parallelisation scheme (MPI/OpenMP)
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Equation of motion for a compressible fluid

Continuity equation
∂ρ

∂t
+ ∇ · (ρu) = 0

Navier Stokes equation:

ρ

(
∂u
∂t

+ u ·∇u + 2Ω× u
)

= −∇p + ρ g +
1
µ0

(∇× B)× B + ∇ · S

with the rate-of-strain tensor expressed by

Sij = νρ

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij ∇ · u

)
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Energy equation for a compressible fluid

ρT
(
∂s
∂t

+ u ·∇s
)

= ∇ · (kT∇T ) + Φν + λ (∇× B)2 + εT

with the viscous heating Φν expressed by

Φν = 2ρ
[
eijeji −

1
3

(∇ · u)2
]

If in addition to that, compositional changes are also considered another equation for
the chemical composition ξ reads

ρ

(
∂ξ

∂t
+ u ·∇ξ

)
= ∇ · (kξ∇ξ) + εξ
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Induction equation

Non-relativistic Maxwell equations provide

∂B
∂t

= ∇× (u × B − λ∇× B)

with ∇ · B = 0
When λ is homogeneous, one simply gets

∂B
∂t

= ∇× (u × B) + λ∆B
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Equation of state

In general:
p = f (ρ,T , ξ)

or
1
ρ
∂ρ = −α∂T + β ∂p + δ∂ξ

where

Thermal expansivity: α = −1
ρ

(
∂ρ

∂T

)
ξ,p

Compressibillity: β =
1
ρ

(
∂ρ

∂p

)
ξ,ρ

Chemical coefficient: δ =
1
ρ

(
∂ρ

∂ξ

)
p,ρ
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From fully compressible to anelastic and Boussinesq
Reference state

MHD equations

MagIC either uses the anelastic or the Boussinesq approximation of the Navier Stokes
equation

Anelastic approximation = small disturbance (prime) around an adiabatic reference
state (tilde):

ε ∼ s ′

cp
∼ T ′

T̃
∼ ρ′

ρ̃
∼ p′

p̃
∼ ξ′

ξ̃

The reference state is hydrostatic, adiabatic, and non magnetic:

∇p̃ = ρ̃ g ; ∇T̃ =
αT̃
cp

g ; ∇ξ̃ = 0
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Anelastic continuity equation

Using ρ = ρ̃+ ρ′ yields

∂ρ̃

∂t︸︷︷︸
=0

+
∂ρ′

∂t
+ ∇ · (ρ̃u) + ∇ ·

(
ρ′u
)︸ ︷︷ ︸

O(ε2)

= 0

Estimate of the ratio
∂ρ′/∂t
∇ · (ρ̃u)

∼ ρ′

ρ̃
∼ ε

The first order anelastic equation thus reads

∇ · (ρ̃u) = 0
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Anelastic equations

Navier-Stokes equation:

∂u
∂t

+ u ·∇u + 2Ω× u = −∇p′

ρ̃
− α̃T̃

cp
s ′g +

1
µ0ρ̃

(∇× B)× B +
1
ρ̃
∇ · S

Energy equation:

ρ̃T̃
(
∂s ′

∂t
+ u ·∇s ′

)
= ∇ ·

(
kT∇T ′

)
+ Φν + λ (∇× B)2 + εT

Induction equation:
∂B
∂t

= ∇× (u × B − λ∇× B)
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Boundary conditions

Mechanical boundary conditions:

Stress-free: n × (S · n) = 0, or no-slip: u = 0, r = ri , ro

Magnetic boundary conditions:

Vacuum: ∆B = 0, r = ri , ro

Thermal boundary conditions:

Flux:
∂T ′

∂r
= 0, or temperature: T ′ = 0, r = ri , ro



� MagIC simulates rotating fluid dynamics in a spherical shell
� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-

perature (or entropy) equation and an equation for chemical composition under both
the anelastic and the Boussinesq approximations
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A dimensionless formulation of the anelastic MHD equation

MHD equations

MagIC uses a dimensionless form of the anelastic MHD equations

In MagIC, the viscous diffusion time is assumed to be the reference timescale and the
spherical shell gap the reference lengthscale:

[ρ̃] = ρ̃(r = ro); [T̃ ] = T̃ (r = ro); [r ] = ro − ri ;

[t] =
d2

ν
; [u] =

ν

d
; [B] =

√
µ0λρ̃Ω; [p′] = ρ̃(r = ro)

ν2

d2

This implies that the velocity is expressed in Reynolds number unit, and the magnetic
field in Elsasser number unit.
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Dimensionless anelastic MHD equations

In the case of an ideal gas with homogeneous kinematic viscosity ν, thermal diffusivity κ
and magnetic diffusivity λ, one gets:

∇ · (ρ̃u) = 0

∇ · B = 0

∂u
∂t

+ u ·∇u +
2
E

ez × u = −∇p′

ρ̃
+

Ra
Pr

g(r) s ′er +
1

ρ̃E Pm
(∇× B) × B +

1
ρ̃
∇ · S

∂B
∂t

= ∇× (u × B) +
1

Pm
∆B

ρ̃T̃
(
∂s ′

∂t
+ u ·∇s ′

)
=

1
Pr

∇ ·
(
ρ̃∇T ′) +

Di Pr
Ra

[
Φν +

1
Pm2 E

(∇× B)2
]

N.B. In case of compositional convection, another equation and two additional control parameters are required.
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Dimensionless Boussinesq MHD equations

In the Boussinesq limit, Di → 0, then

∇ · u = 0

∇ · B = 0
∂u
∂t

+ u ·∇u +
2
E

ez × u = −∇p′ +
Ra
Pr

g(r) T ′er +
1

E Pm
(∇× B) × B + ∆u

∂B
∂t

= ∇× (u × B) +
1

Pm
∆B

∂T ′

∂t
+ u ·∇T ′ =

1
Pr

∆T ′
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From physical properties to dimensionless numbers

Ekman number: E =
ν

Ω d2

Rayleigh number: Ra =
αTogod3∆s

cpνκ

Prandtl number: Pr =
ν

κ

Magnetic Prandtl number: Pm =
ν

λ

Dissipation number: Di =
αTogo

cp

Radius ratio: η =
ri
ro

N.B. when Di → 0, the Boussinesq limit is recovered.
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The (astro/geo)physical regime

Parameter Earth’s core Giant planets Sun

E 10−15 10−18 10−15

Ra 1027 1030 1024

Pr 0.1 0.1 10−6

Pm 10−6 10−7 10−3

Λ (Lorentz/Coriolis) 1 1 ?
Ro` (Inertia/Coriolis) 10−2 10−3 1

Rm (adv./diff.) 1000 105 109

Re (adv./diff.) 109 1012 1012

What does it actually implies? Is it possible to reach these parameters with my
numerical dynamo model?
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Reynolds number: the range of length-scale

Re =
urms d
ν

=
d
`d

where `d =
ν

urms

`d =
d
Re

In natural objects, ld ∼ 10−9 d
In other words, the ratio of the bigger length-scale to the smallest one is 109.
You might need 109 grid points in each direction. This implies Remesh = 1.
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Ekman number: the range of time-scales

E =
ν

Ω d2 =
Prot

τν
where τν =

d2

ν

τν is the viscous diffusion time, Prot the rotation period.

τν =
Prot

E

In natural objects, τν ∼ 1015 Prot

In other words, the ratio of the longest time-scale to the smallest one is 1015!
You might need 1015 time steps to model the problem
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Summary
Parameter Earth’s core Tractable Hard limit (2015)

E 10−15 ≥ 10−6 10−7

Ra 1027 ≤ 1012 1013

Pr 0.1 0.1− 10 1
Pm 10−6 0.1 6× 10−2

Λ (Lorentz/Coriolis) 1 1 1
Ro` (Inertia/Coriolis) 10−2 10−3 − 10−1 10−1

Rm (adv./diff.) 1000 1000 1000
Re (adv./diff.) 109 100− 1000 7000

Two complementary approaches

In the “tractable” regime: parameter studies are possible

In the “hard-limit” regime, only one single run is possible
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� MagIC simulates rotating fluid dynamics in a spherical shell
� It solves for the coupled evolution of Navier-Stokes equation, MHD equation, tem-
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� Chebyshev polynomials or finite differences are employed in the radial direction
� MagIC uses a mixed implicit/explicit time stepping scheme
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Requirements to compile MagIC

Requirements

Mandatory Fortran and C compilers
Suggested git (https://git-scm.com/) to clone the code repository
Suggested CMake (https://cmake.org) to build the code
Suggested MPI library: rather use intelMPI or MPICH for full support for hybrid

MPI/OpenMP
Optional LAPACK or MKL
Optional SHTns for spherical harmonics transforms

https://git-scm.com/
https://cmake.org
http://www.netlib.org/lapack/
https://software.intel.com/en-us/mkl
https://bitbucket.org/bputigny/shtns-magic
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Data visualisation and post processing
Requirements

Post-processing functions are python based. You need to install the following libraries:

Python libraries required

Mandatory matplotlib (https://matplotlib.org): plotting functions
Mandatory scipy (https://www.scipy.org): scientific libraries
Suggested ipython (https://ipython.org): interactive shell
Optional basemap (https://matplotlib.org/basemap/): additional map

projections

https://matplotlib.org
https://www.scipy.org
https://ipython.org
https://matplotlib.org/basemap/
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Get the code and compile it

1 Install requirements:
$ module load gcc-6 gfortran-6 libopenmpi cmake git
$ module load python27 python-scipy ipython python-matplotlib

2 Clone the code from github
$ git clone https://github.com/magic-sph/magic.git

3 Set-up the environment variables
$ cd magic
$ source sourceme.sh # (or sourceme.csh)

4 Define the Fortran and C compilers
$ export FC=mpif90 # replace by your compiler
$ export CC=mpicc

5 Create a build directory and compile
$ mkdir build; cd build
$ cmake $MAGIC_HOME -DUSE_MPI=yes -DUSE_OMP=no
$ make -j
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MagIC structure



Introduction MHD problem Installing and running the code Postprocessing

Run MagIC

Run with 8 CPUs:
$ export OMP_NUM_THREADS=1
$ mpiexec -n 8 magic.exe input.nml

input.nml contains all the input informations required to run the code!

Documentation

https://magic-sph.github.io/inputNamelists/namelists.html
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Input namelist (1/3)

&grid
n_r_max =33, ! Radial resolution
n_cheb_max =31, ! Number of Chebyshev polynomials
n_phi_tot =192, ! Azimuthal resolution
minc =1, ! Azimuthal symmetry

/
&control
mode =0, ! Magnetic, non-magnetic, ...
tag ="test", ! Extension of the output files
n_time_steps=40000, ! Number of timesteps
dtmax =1.0D-4, ! Maximum timestep
runHours =02, ! Run-time
runMinutes =00,

/



Input namelist (2/3)
&phys_param
ra =1.1D5, ! Rayleigh number
ek =1.0D-3, ! Ekman number
pr =1.0D0, ! Prandtl number
prmag =5.0D0 ! Magnetic Prandtl number
radratio =0.35D0, ! Radius ratio r_i/r_o
ktops =1, ! BC: fixed-temperature at the top
ktopv =2, ! BC: rigid wall at the top

/
&start_field
l_start_file=.false., ! Start from a check point?
start_file ="checkpoint_end.start", ! Name of the check point
init_b1 =3, ! Init. mag. field: dipole
amp_b1 =1, ! Amplitude \Lambda=1
init_s1 =0404, ! Init. temperature perturbation
amp_s1 =0.03, ! Amplitude of the init. pert.

/
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Input namelist (3/3)

&output_control
n_log_step =50, ! Output every n_log_step
n_graphs =3, ! Number of graphic files
n_rsts =1, ! Number of restart files
n_stores =0,
n_specs =1, ! Number of spectra

/
&mantle
nRotMa =0

/
&inner_core
sigma_ratio =1.d0, ! Conducting inner-core
nRotIC =1, ! Rotating inner core

/
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log.TAG file

log.TAG provides all the important information about the run:
All parameters and other inputs including default values
Information on parallelization, run time etc
Log of important events: important output files, changing time step, ...
Some important time averaged quantities, measures ...

Documentation

https://magic-sph.github.io/outputFiles/logFile.html#seclogfile
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Plotting time series

e_kin.TAG is always produced. It contains the time evolution of kinetic energy.
To plot it:

Open ipython and load the python modules
ipython --matplotlib=gtk (or ipython --pylab)
>>> from magic import *
>>> ts = MagicTs(field='e_kin') # Read e_kin.TAG file in $PWD
>>> pdoc MagicTs # Gives you the documentation

Plot the time evolution of magnetic energy
>>> ts = MagicTs(field='e_mag_oc') # Read e_mag_oc.TAG file in $PWD

Manipulate the data
>>> print(ts.time, ts.emagoc_pol)

Documentation

https://magic-sph.github.io/outputFiles/outTimeSeriesStd.html
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Loading and plotting snapshots

G_#.TAG files contain 3-D arrays on the grid:
Load the G_1.TAG file:

>>> from magic import *
>>> s = Surf(ivar=1)

Plot the radial velocity ur in the equatorial plane:
>>> s.equat(field='vr')

Plot the φ-averaged azimuthal flow uφ:
>>> s.avg(field='vp', cm='seismic', levels=33)

Plot the radial cut of Br at r = 0.75 ro :
>>> s.surf(field='Br', r=0.75) # Hammer projection

Documentation

https://magic-sph.github.io/outputFiles/outGraph.html
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Data visualisation and post processing
Additional outputs

Plot spectra kin_spec_1.TAG
>>> # Plot kin_spec_1.TAG
>>> sp = MagicSpectrum(field='kin', ispec=1)

Documentation

Plot the time-averaged radial profile of magnetic energy eMagR.TAG
>>> # Plot eMagR.TAG
>>> r = MagicRadial(field='eMagR')

Documentation

And more...
>>> # Movie files (time evolution of 2D slices)
>>> m = Movie()

Documentation

https://magic-sph.github.io/outputFiles/outSpecFiles.html
https://magic-sph.github.io/outputFiles/outRadialFiles.html
https://magic-sph.github.io/outputFiles/outMovie.html
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Data visualisation and post processing
3-D visualisation with paraview

Requirements

Install a vtk-friendly software: here paraview but VisIt or mayavi should also work
fine.

1 Read the graphic file you want to convert
>>> from magic import MagicGraph
>>> gr = MagicGraph(ivar=1) # Load G_1.TAG

2 Convert it to a file format readable by paraview
>>> # Produce output.vts
>>> Graph2Vtk(gr, filename='output')

3 Load output.vts with paraview
$ paraview output.vts

Documentation

https://magic-sph.github.io/apiPython/toParaview.html
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