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Lecture

• radiation hydrodynamics	

• implicit method	

• flux-limited diffusion approximation	

!

• methods in RAMSES	

• FLD, adaptive-time-stepping	

• interface with RADMC-3D	

• anisotropic diffusion



Exercise

• Hands-on RAMSES	

• download the code: https://bitbucket.org/bcommerc/ramses_fld	

• run the test suite (MHD, RHD)	

• play with the namelists



Outline

1. Introduction 
2. RHD with Grey Flux Limited Diffusion  

• integration in RAMSES	
• adaptive time-steps	
• tests	

3. Multigroup FLD 
• scheme	
• tests	

4. Extension to cosmic rays hydrodynamics



Motivation	for	radiation	hydrodynamics	(RHD)

• Add more physics	

• Account for radiative transfer feedback on 
hydrodynamics - combined matter-radiation fluid	

• continuum radiation	

• stellar irradiation	

• ionisation	

• radiation pressure	

• Need to known the radiation field intensity in the 
computational domain



Foundations	of	radiation-hydrodynamics

• As for MHD, a lot of approximations and sub-grid physics	

• Cover a wide range of physical and dynamical scales	

• Mathematical problem: hyperbolic-parabolic system	

• In which frame should the photons be                     
evaluated? (co-moving, mixed-frame)?	

• Frequency dependent transport?	

• Non-LTE effects?	

• Opacities?



Regimes	for	radiation	transport

Radiation can propagate through the medium in two limiting regimes. 	

Photon mean free path                   ;   Optical depth ⌧⌫ = ⌫L�⌫ =
1

⌫

�⌫ << L

�⌫ >> L• Free streaming            	

!

• Diffusion limit 

• Optically thin            	

!

• Optically thick ⌧⌫ >> 1

⌧⌫ << 1

If radiation is coupled to the gas, two additional regimes for the diffusion 
depending on v/c (e.g. Krumholz et al. 2007)	

• Dynamic diffusion	

e.g., stellar interior            	

• Static diffusion 	

e.g., stellar accretion disk           	
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Description	of	radiation	field

• Radiation field is a function of position, time, angle & frequency	

• Radiation specific intensity                        defined as	

!

• 7 dimensions => need to reduce dimensionality	

!

• Moments of the specific intensity 	

• Energy	
!

• Flux	
!

• Pressure

dE = I(x, t;n, ⌫)dS cos(↵)d!d⌫dt
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Description	of	radiation	field

• Thermal radiation: assuming Thermodynamical Equilibrium, intensity is 
described by an isotropic distribution function, the Planck function	

!

!

• Stefan law: integrated energy density for thermal radiation	

!

!

• One can define a radiation temperature such as

B⌫(T ) =
2h⌫3

c2
1

eh⌫/kT � 1
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• Radiative transfer equation

Radiative	transfer	equation

�
1
c

⌅

⌅t
+ n ·⇥

⇥
I(x, t;n, ⇥) = �(x, t;n, ⇥)� ⇤(x, t;n, ⇥)I(x, t;n, ⇥)

Specific intensity

Emission

Absorption

• Assuming TE (and neglecting scattering), thermal emission/absorption terms 
are

⌘th(x, t;n, ⌫) = (x, t;n, ⌫)B(x, t;n, ⌫)

�(x, t;n, ⌫) = (x, t;n, ⌫)I(x, t;n, ⌫)



• Radiative transfer equation

Moments	of	the	RT	equation

TOO HEAVY for multidimensional dynamical 
calculations 

�
1
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⌅

⌅t
+ n ·⇥

⇥
I(x, t;n, ⇥) = �(x, t;n, ⇥)� ⇤(x, t;n, ⇥)I(x, t;n, ⇥)

@E⌫
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• Zeroth-moment	

Z
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• First-moment



F⌫ = � c

3⌫
rE⌫

Moments	models

• System of two equations, three variables => need a closure relation 

• Flux-Limited Diffusion (FLD)	

• Optically thick medium <=> diffusion approximation. Radiation field is 
isotropic                   and radiative flux is stationary.P⌫ =

1

3
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Flux	Limited	Diffusion

• Flux limiter guarantees the two limits for radiation transport	

✓ λ is a function of 	

✓ λ→1/R in the free streaming limit such that 	

✓ λ→1/3 in the diffusion limit

||F⌫ || = cE⌫

R = |rE⌫ |/(⌫E⌫)

Levermore (1984)

• Various flux limiter: 	

Minerbo (1978)	

Levermore & Pomraning (1981)

• Eddington tensor	 P⌫ = DE⌫
Levermore (1984)� = �+ �2R2



Grey	Flux	Limited	Diffusion

• Integration of all radiative quantities over frequency

• Planck mean opacity

Er =

Z
E⌫d⌫

P =

R
⌫B⌫(T )d⌫R
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• Rosseland mean opacity
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Short	note	on	opacity	weighting

✓ usual Rosseland and Planck mean opacities	
!
!

✓ Opacity depends on temperature and density 

P =

R ⌫
max

⌫
min

⌫B⌫(T, ⇢)R ⌫
max

⌫
min

B⌫(T, ⇢)

But not enough if radiative feedback from 
stellar sources	

!
!

Lost of spectral information (Teff,★>>Tr) 
=> underestimate opacity 	

(See for instance Kuiper et al. work)

@tEr = L?

Vaytet et al. (2012)
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Implicit	vs.	explicit

• Heat equation	

!

• Explicit discretization	

!

• Truncation error	

!

• Stability criterion	

!

• Convergence = Consistency + Stability
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= r.KrEr
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Implicit	vs.	explicit

• Explicit scheme
E

n+1
r,i � E

n
r,i

�t

= K

E

n
r,i+1 � 2En

r,i + E

n
r,i�1

�x

2

�t = �tdi↵ �t = 1.005�tdi↵



Implicit	vs.	explicit

• Heat equation	

!

• Explicit discretization	

!

• Truncation err

Ratio between diffusion time and CFL time in a collapsing core

Stability criterion for parabolic equation

�tdi↵ =
�x

2

2K

Stability criterion for hyperbolic equation

�thyd = CCFL
�x

v



Implicit	vs.	explicit

• Heat equation	

!

• Implict discretization	

!

• Truncation error	

!

• Unconditionnaly stable
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n+1
r,i�1

�x

2

➡ Choice of the implicit scheme for diffusion terms for the rest of the 
lecture	



Implicit	vs.	explicit

• Implicit scheme E

n+1
r,i � E

n
r,i

�t

= K

E

n+1
r,i+1 � 2En+1

r,i + E

n+1
r,i�1

�x

2

�tdi↵ = 10�3

Non-linear diffusion coefficient

Scheme is convergent but large truncation 
errors



Which	frame?

• Radiative quantities are estimated in the laboratory frame	

• but… matter/radiation interactions are estimated in the comoving frame	

• Fluid equations are estimated in the comoving frame. 	

➡Let’s go for comoving

• Lorentz transformation from the laboratory to the fluid frame at 0(1) in v/c

see e.g. Mihalas & Klein (1982), Krumholz et al. (2007) for a 
mixed frame formulation

@F⌫

@t
+r · [uF⌫ ] + c2r · P⌫ + (F⌫ ·r)u = �⌫F⌫

{@E⌫

@t
+r · [uE⌫ ] +r · F⌫ + P⌫ : ru = ⌫(4⇡B⌫ � cE⌫)



FLD	-	RHD	equations

• System of 4 equations, mix hyperbolic and parabolic
8
>>>>>>>><

>>>>>>>>:

@t⇢+r · [⇢u] = 0
@t⇢u+r · [⇢u⌦ u+ P I] = ��rEr

@tET +r · [u (ET + P)] = �Prr : u� �urEr

+r ·
⇣

c�
⇢R

rEr

⌘

@tEr +r · [uEr] = �Prr : u+r ·
⇣

c�
⇢R

rEr

⌘

+P⇢c(aRT 4 � Er),

ET =
P

� � 1
+ ⇢

u2

2
+ Er
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RAMSES code

✓ RAMSES code (Teyssier 2002) 
• Adaptive Mesh Refinement - cell by cell	
• 2nd order Godunov finite volume	
• MUSCL-Hancock predictor/corrector	
• adaptive time-steps	
• MPI parallel	
• ideal and non-ideal MHD (Fromang et al., Teyssier et al. 2006, Masson et al. 2012)	
• sink particles using clump finder (Bleuler & Teyssier 2014)	

!
!
!
!
!
!
!
!
!



RHD	with	Flux	Limited	Diffusion	in RAMSES

✓ RHD solver in the comoving frame using the grey Flux Limited 
Diffusion approximation (Commerçon et al. 2011a, 2014)

       Riemann solver - explicit            Corrective terms - explicit    Coupling + Diffusion - implicit

@tU+rF(U) = S(U)

U =

2

664

⇢
⇢u
ET

Er

3

775P =

2

664

⇢
u
P
Er

3

775

Primitive Conservative

�t  CCFL
�x

u+
q

�P
⇢ + 4Er

9⇢



Godunov	part

• Jacobian matrix

@tP+ B(P)rP = 0@tU+rF(U) = 0

B(V) =

0

BB@

u ⇢ 0 0
0 u 1

⇢
1
3⇢

0 �P u 0
0 4Er

3 0 u

1

CCA

• 3 eigenvalues	

✓ Largest fan of solution	

�i =

8
>><

>>:
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q
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q
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Godunov	part

• Jacobian matrix

@tP+ B(P)rP = 0@tU+rF(U) = 0

B(V) =

0

BB@

u ⇢ 0 0
0 u 1

⇢
1
3⇢

0 �P u 0
0 4Er

3 0 u

1

CCA

• update the flux using	

approximate Riemann solvers (LF, HLL, HLLD)

Same can be done for any other non-thermal energy 	
(e.g. cosmic rays)

F(U) =

2

664

⇢u
⇢u⌦ u+ (P + 1/3Er)I
u (ET + P + 1/3Er)

uEr

3

775



Source	terms

• Correct for too large radiative pressure in radiative force (momentum) and 
radiative pressure work (total energy)	

+ update radiative energy

S(U) =

0

BB@

0
�(�� 1/3)rEr

�(�� 1/3)(u ·rEr + Err : u)
Prr : u

1

CCA .

• Terms are estimated using finite differences, accounting for AMR grid effects	

• Accounts for anisotropy in the radiative pressure tensor	



Implicit	update	of	diffusion/coupling	

✓ Implicit discretization	
!
!
!
!
!
!
!!

!
✓ Linearize the emission term	

!
!
!

✓ Matrix system to invert which is symmetric and positive definite	

(Tn+1)4 = (Tn)4
✓
1 +

(Tn+1 � Tn)

Tn
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✓ Finite volume framework

�Er

�t
V = F ⇥ S



Implicit	update	of	diffusion/coupling	

✓ Implicit solved with an iterative conjugate gradient algorithm	
!

!
✓ matrix elements are stored during iterations	
✓ diagonal preconditionning	
✓ scales in N log(N)	

!
!
✓ Update gas temperature	

!
!
!
!
!

�Ci�1/2E
n+1
r,i�1 + (1 + Ci�1/2 + Ci+1/2)E

n+1
r,i � Ci+1/2E

n+1
r,i+1 = f(En

r,i, T
n+1
i )

Tn+1
i =

3aRn
P,ic�t (Tn

i )
4 + CvTn

i + n
P,ic�tEn+1

r,i

Cv + 4aRn
P,ic�t (Tn

i )
3

Linearisation only works if temperature changes are small



• Simple heat equation: 
!
!
✓ Implicit scheme is unconditionally stable	

!
➡ How to speed-up implicit schemes on AMR grids? 

✓ use a unique time step for all the levels and couple all the levels 
(Commerçon et al. 2011)	

✓ each level evolves “independently” form the others: needs to specify 
boundary conditions at level interfaces (e.g., nested grids, Tomida et al.)	

✓ use adaptive time stepping (ORION, CASTRO)	
!

!
!

!

Implicit	integration	of	a	diffusion	equation

@Er

@t
= r.KrEr



@Er

@t
= r.KrEr

Implicit	integration	of	a	diffusion	equation

• Simple heat equation: 
!
!
✓ Implicit scheme is unconditionally stable	

!
➡ How to speed-up implicit schemes on AMR grids? 

✓ use a unique time step for all the levels and couple all the levels 
(Commerçon et al. 2011)	

✓ each level evolves “independently” form the others: needs to specify 
boundary conditions at level interfaces (e.g., nested grids, Tomida et al.)	

✓ use adaptive time stepping (ORION, CASTRO)	
!

!
!

!



Adaptive	time-stepping	on	AMR	grid

Straightforward for explicit scheme 	
at coarse-to-fine interface:

Fn+�t`�1

i+1/2 =
1

�t`1 +�t`2

⇣
�t`1F

n+�t`1
i+1/2 +�t`2F

n+�t`1+�t`2
i+1/2

⌘
,

Level

`

`+ 1

`� 1

�t`�1

�t`+1

�t`1 �t`2

Time-stepping

+ energy is conserved	
+ highly efficient for hydrodynamics	
!



• Simple heat equation: 
!
!
✓ Implicit scheme is unconditionally stable	

!
➡ How to speed-up implicit schemes on AMR grids? 

✓ use a unique time step for all the levels and couple all the levels 
(Commerçon et al. 2011)	

✓ each level evolves “independently” form the others: needs to specify 
boundary conditions at level interfaces (e.g., nested grids, Tomida et al.)	

✓ use adaptive time stepping (ORION, CASTRO)	
!

!
✓ Recurrent problems: 

✓ energy propagation	
✓ energy conservation	

!

@Er

@t
= r.KrEr

Implicit	integration	of	a	diffusion	equation



Adaptive	time-stepping	on	AMR	grid

Straightforward for explicit scheme 	
at coarse-to-fine interface:

Fn+�t`�1

i+1/2 =
1

�t`1 +�t`2

⇣
�t`1F

n+�t`1
i+1/2 +�t`2F

n+�t`1+�t`2
i+1/2

⌘
,

Level

`

`+ 1

`� 1

�t`�1

�t`+1

�t`1 �t`2

Time-stepping

+ energy is conserved	
+ highly efficient for hydrodynamics	
!

!
energy does not propagate more 	
than one cell (CFL condition)	
!
=> What happens for implicit schemes	
when flux are stored?

NEGATIVE ENERGY!!!! x

but….



Grid	configuration	and	boundary	conditions

• Dirichlet: imposed boundary value (Er=Er,b)	
➡ robust , but energy is not conserved	!

• Neumann: imposed flux condition (Fr=Fr,b)	
➡ energy is conserved (e.g. Howell & 

Greenhough 2003)	
!

• Robin: mix between Dirichlet and Neumann, 
weighted by a parameter ↵

i-1

i

l+1 l

(a)

**

Neighbor is more refined

i

i-1

ll-1

* *

(b)

Neighbor is less refined

• Fine-to-coarse interface: Dirichlet BC	
!
!

• Coarse-to-fine: 3 possibilities                        
…but energy mismatch in Dirichlet and Robin case

Commerçon et al. (2014)



Test:	1D	Dirac	diffusion

↵ =1 Dirichlet: Energy conservation

good results with Dirichlet even if energy is not conserved

Commerçon et al. (2014)



Test:	stationary	non-linear	diffusion	

2nd order in space
- similar results than using using a unique time step	
- Neumann and Robin BC do not pass this test because of negative energy (initial 
gradient)…	

no
rm

 L
2 

er
ro

rR / E3/2
r

Commerçon et al. (2014)



Test:	radiation/matter	coupling	

- need to relax the time step!	

Commerçon et al. (2011)



Test:	radiative	shocks

Ek2~0 

ΔUi=εEk1 

Ek1=1/2ρu1
2 

Ui~0 

Frad=(1-ε)Ek1

T1

T+

T2

T- T1

T-

T+

T2

- Jump conditions (Rankine-Hugoniot)	
!
!
!
!
!
!
!
- Shock becomes supercritical if T->Tcr

Commerçon et al. (2011b)



Test:	radiative	shocks

supercriticalsubcritical

Gain in CPU time compared to synchronised timestep: 50-100	
Commerçon et al. (2014)



Test	3D:	1	solar	mass	dense	core	collapse

Gain in CPU time 
compared to DTU: 	

factor 10	

Commerçon et al. (2014)



Towards	synthetic	observations

- 3 representative cases 
MU2:     pseudo-disk + outflow	
MU10:   disk + pseudo-disk + outflow 
MU200: disk + fragmentation	
!

- First core lifetime: 
!

!
!
!
!
!
!
- Images & SED computed with the radiative 
transfer code RADMC-3D, developed by C. 
Dullemond (ITA Heidelberg)	
- Tdust =Tgas (given by the RMHD calculations)

MU2 MU10 MU200

1.2 kyr 3 kyr > 4 kyr

∑gas,xy

∑gas,xz

Tgas,xy

Tgas,xz

μ=2 μ=10 μ=200

Commerçon, Launhardt, Dullemond & 
Henning, A&A 2012



SED	-	Do	we	see	a	first	core	signature?

!
- Objects at 150 pc, 3000 AU x 3000 AU region	
- Prestellar core = initial conditions (black line)	
- Emission in the FIR => HERSCHEL, SPITZER	
- But similar SEDs in the MU200 model, i.e. with a disk! 	
=> Issues in SED-fitting models for early Class 0?	!
Help to select first core candidates & to distinguish 
starless cores and first cores

MU2

face-up edge-on

SPITZER
HERSCHEL

MU200

Commerçon, Launhardt, Dullemond & 
Henning, A&A 2012



ALMA Band 3 Config 20 @150 pc In
cl

in
at

io
n

1300 AU

Magnetization

Synthetic	ALMA	dust	emission	maps

Commerçon, Levrier et al. A&A, 2012



- Ng+1 coupled equations	
- Linearized source term	
- Non-symmetric matrix to invert 	
- BiCGStab iterative method (x2 more 
operations compared to CG)	
- in the grey approx., it reduces to CG	

Extension	to	multigroup	FLD

✓ same operator split as in the previous 
grey model	
+ one term of advection in frequency 
space (Doppler effect)

González et al. (2015)



1D	Dirac	diffusion	with	2	energy	groups

R1 = 1;R2 = 10

González et al. (2015)



Radiative	tests	(no	hydro)

González et al. (2015)

Su-Olson test

Scalability tests

1st group

2nd group

gas



Radiative	shocks

González et al. (2015)

Subcritical shock Supercritical shock



Application	to	star	formation:	protostellar	collapse

González et al. (2015)

Supercritical shock

1 M⊙ magnetised dense core (Boss & 
Bodenheimer test case)	
- 2 simulations : grey + multi group with 20 
frequency bins	
- ideal MHD (μ=5)

Temperature-density distribution

Grey 20 bins

Gas colder within the first 
Larson core, but warmer in 
the envelop and in the 
outflow	
=> same effects for more 
massive core?



Link	with	observations

González et al. (2015)
Frequency channel maps Spectral energy distribution

R=2000 AU

R=20 AU



• FLD has limitations…	

• isotropy 	

• streaming limit	

!

• M1 method (e.g., HERACLES code, González et al. 2007, RAMSES_RT, Rosdahl et al. 
2013)	

• VET (Variable Eddington Tensor) method (e.g., ZEUS code, Stone et al. 1992, 
ATHENA code, Davis et al. 2012, OTVET,Gnedin & Abel 2001)	

• Irradiation + FLD (e.g., PLUTO code, Kuiper et al. 2010, Flock et al. 2013, FLASH, 
Klassen et al. 2016)	

• Monte Carlo RHD (e.g., TORUS code, Harries 2015)

Beyond	FLD

Non-exhaustive list…

Shadow test (Hayes & Normann 2003)



Cosmic rays hydrodynamics 
on grids !

Benoît Commerçon!
Centre de Recherche Astrophysique de Lyon  

Yohan Dubois (IAP Paris)

Dubois & Commerçon (2016)



Why conduction of heat?

• Kinetic energy is converted into thermal energy at 
shocks. 

• The conduction of heat can spread the shock and reheat 
regions that would have remained cold otherwise. 

• Heat is primarily conducted by electrons (lighter 
population). 
➡If the coupling timescale of ion and electron 

temperatures is larger than the diffusion timescale (or 
than the eddy-turnover timescale): ion and electron 
temperatures differ.

Courtesy Y. Dubois



Why anisotropic?

• Magnetic field is present 
everywhere in astrophysics. 

• Charged particles diffuse 
along magnetic field lines.

B-field lines

Courtesy Y. Dubois



➡ Fluid of gas + cosmic ray with total energy  
!
!
!
!

!
!
!
!
!
!
!
!
!
!

➡ modified sound speed 
➡ anisotropic diffusion tensor… 

!

MHD + 2CTAC + CRAD*

mass equation

momentum equation

total energy equation

induction equation

electron energy equation

CR energy equation

* Magneto-hydrodynamics with 2 coupled temperatures, anisotropic conduction, and anisotropic diffusion of cosmic rays

Anisotropic	diffusion	in RAMSES

Conservative terms

Source terms

e = eint + ⇢u2/2 +B2/2 + ecr

c̃s =
p

cs + �cr(�cr � 1)ecr



Implicit	integration	of	CR	diffusion	equation
! !!!!!!!

• CFL condition is 	
!
✓ But implicit scheme is unconditionally stable	

!
➡ Implicit discretization using a centred symmetric scheme (Günter et al. 2005):	

!
!
	 + easy to solve using conjugate gradient	
	 - does not preserve monotonicity (negative values)	

!
➡ implicit adaptive time-step (Commerçon et al. 2014)	

!
!
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Implicit	integration	of	CR	diffusion	equation

D? = 0.01Dk�t

exp

<

�x

2

2Dk

en+1
i,j = f(eni,j , e

n+1
i�1,j , e

n+1
i+1,j , e

n+1
i,j�1, e

n+1
i,j+1)

! !!!!!!!
• CFL condition is 	

!
✓ But implicit scheme is unconditionally stable	

!
➡ Implicit discretization using a centred symmetric scheme (Günter et al. 2005):	

!
!
	 + easy to solve using conjugate gradient	
	 - does not preserve monotonicity (negative values)	

!
➡ implicit adaptive time-step (Commerçon et al. 2014)	

!
!



Implicit	integration	of	CR	diffusion	equation	in	2DAnisotropic conduction in 2D

i,j i+1,ji-1,j

i-1,j i+1,j+1i-1,j-1

i,j+1 i+1,j+1i-1,j+1

Fi+ 1
2 ,j

Fi,j+ 1
2

Fi� 1
2 ,j

Fi,j� 1
2

Courtesy Y. Dubois



Anisotropic conduction in 2D

i,j i+1,ji-1,j

i-1,j i+1,j+1i-1,j-1

i,j+1 i+1,j+1i-1,j+1

Fi+ 1
2 ,j

Fi,j+ 1
2

Centred symmetric scheme 
(Günter et al, 2005)

Courtesy Y. Dubois



Anisotropic conduction in 2D

Fi+ 1
2 ,j+

1
2

Fi+ 1
2 ,j�

1
2

i,j i+1,j

i-1,j i+1,j+1

i,j+1 i+1,j+1

Fi+ 1
2 ,j

Centred symmetric scheme 
(Günter et al, 2005)

Courtesy Y. Dubois



Anisotropic conduction in 2D

Fi+ 1
2 ,j+

1
2

i,j i+1,j

i-1,j i+1,j+1

i,j+1 i+1,j+1

Fi+ 1
2 ,j

Centred symmetric scheme 
(Günter et al, 2005)

Courtesy Y. Dubois



Anisotropic conduction in 2D

Fi+ 1
2 ,j+

1
2

i,j i+1,j

i,j+1 i+1,j+1

Fi+ 1
2 ,j

Centred symmetric scheme 
(Günter et al, 2005)



Anisotropic conduction in 2D

Fi+ 1
2 ,j+

1
2

i,j i+1,j

i,j+1 i+1,j+1

Fi+ 1
2 ,j

Centred symmetric scheme 
(Günter et al, 2005)

Trivial to expand to 3D 
6 fluxes at cell interfaces. 

Each flux obtained from 4 flux corners. 
Each flux corner uses 8 neighboring cells. 



Limitations
• The solution to AC does not preserve monotonicity (i.e. negative 

temperatures) 

➡ Add a perpendicular diffusion coefficient and restore positive values 
after an AC step 

➡ (or use an asymmetric scheme w/ slope limiter, BUT need for bi-
conjugate gradient method: HEAVIER) 

• The Dirichlet boundary condition for AMR does not ensure energy 
conservation. 

➡ Live with it 

➡ (or use imposed fluxes at boundaries: more memory consumption 
and can create negative temperatures) 

➡ (or solve AC on the whole grid in one pass: more CPU expensive)



Test	1d:	shock	tube



Test	1d:	diffusion	of	a	step	function



Test	2d:	diffusion	along	circular	B	field

Energy diffusion along circular B field


