Particle-in-cell simulations

Part I: Numerical methods

Benoît Cerutti

IPAG, CNRS, Université Grenoble Alpes, Grenoble, France.

Astrosim, Lyon, June 26 - July 7, 2017.

Plan of the lectures

• Monday:

- *Morning*: The PIC method, numerical schemes and main algorithms.
- Afternoon: Coding practice of the Boris push and the Yee algorithm.

• <u>Tuesday:</u>

- *Morning*: Implementation of Zeltron, structure and methods.
- Afternoon: Zeltron hands on relativistic reconnection simulations
- *Evening*: Seminar about application of PIC to pulsar magnetospheres.

• <u>Wednesday:</u>

- *Morning*: Boundary conditions and parallelization in Zeltron.
- Afternoon: Zeltron Hands on relativistic collisionless shocks simulations

Astrophysical context

Planetary magnetospheres

Supernova Remnants

Solar corona & wind, heliosphere

Pulsar Wind Nebulae

Gamma-ray bursts

Broad non-thermal distributions

Blazars

Cosmic Ray Spectra of Various Experiments

[http://www.physics.utah.edu/~whanlon/spectrum.html]

Particle acceleration processes

Magnetic reconnection Magnetic energy => Particles

Shocks

Reconnecting Magnetic Field Line Large Coronal Loop Inflowing Magnetic Field Loop Hot Flare Loop

Accretion disk coronae, magnatars, pulsars, jets, GRBs

Hands on session II on Tuesday afternoon

Flow kinetic energy => Particles

GRBs, SNRs, PWNe, jets...

Hands on session III on Wednesday afternoon

Collisionless plasmas

Collisions thermalizes efficiently the particle distribution, **not good for nonthermal** distributions. In most astrophysical environments, plasmas are **very dilute** so that they are effectively "collisionless".

Coulomb collisions **mean free path**: $l_c = \frac{1}{n\sigma_c}$ Frequency of collisions $v = \frac{V}{l_c}$ **Collisionless** plasma if the plasma frequency $\omega_{pe} \gg v$

It also implies that there is a large number of particles per **Debye sphere**: $N_D = n \lambda_D^3 \gg 1$

Particles sensitive to **collective plasma phenomena** over binary collisions, particularly important on the **sub-Debye length** and **plasma frequency scales** (plasma frequency and gyroradius).

These microscopic scales are involved in particle acceleration process. Need to resolve kinetic scales (\neq MHD approach), and system size $L \gg \lambda_D$

The particle distribution function

Let's start by defining the particle distribution function:

$$f(\mathbf{r}, \mathbf{p}, t) = \frac{dN}{d\mathbf{r} d\mathbf{p}}$$

6D in phase space **+1D** in time

The total number of particles is given by: $N = \iint_{r,p} f(r, p, t) dr dp$

The plasma **charge density** by:
$$\rho = q \int_{p} f(\mathbf{r}, \mathbf{p}, t) d\mathbf{p}$$

The plasma current density by: $J = q \int_{p} v f(r, p, t) dp$

The Vlasov equation

The evolution of distribution function is given by the **Boltzmann equation**:

$$\frac{\partial f}{\partial t} + \frac{p}{\gamma m} \cdot \frac{\partial f}{\partial r} + F \cdot \frac{\partial f}{\partial p} = \left(\frac{\partial f}{\partial t}\right)_{Collisions}$$
For a collisionless plasma: $\left(\frac{\partial f}{\partial t}\right)_{Collisions} = 0$
And if the fluid feels only the electromagnetic force: $F = q \left(E + \frac{v \times B}{v}\right)^{2}$

We obtain the **Vlasov equation**:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{p}} = 0$$

Along with **Maxwell equations**, we have all equations to model collisionless plasmas.

Two numerical approaches to solve Vlasov

Ab-initio model, no approximations

Directly with a Vlasov-code

Treat phase space as a continuum fluid

Advantages:

- **No noise**, good if tail of f is important dynamically (steep power-law).
- No issue if plasma very **inhomogeneous**.
- Weak phenomena can be captured

Limitations:

- Problem (6+1)D, hard to fit in the memory, limited resolution.
- Filamentation of the phase space But becoming more competitive, new development to come, stay tuned!

Not covered here

Indirectlty with a PIC code

Sample phase space with particles

Advantages:

- Conceptually **simple**
- Robust and easy to implement.
- Easily **scalable** to large number of cores

Limitations:

- Shot noise, difficult to sample uniformly f,
- Artificial collisions, requires many particles
- Hard to capture weak/subtle phenomenas
- Load-balancing issues

Main focus of this lecture

The particle approach

The Vlasov equation can be written in the form of **an advection equation:**

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{\gamma m} \cdot \frac{\partial f}{\partial \mathbf{r}} + q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \cdot \frac{\partial f}{\partial \mathbf{p}} = 0 \quad \Longrightarrow \quad \frac{\partial f}{\partial t} + \nabla (f \mathbf{U}) = 0$$

Vlasov equation can be solved along **characteristics curves** along which it has the form of a set of ordinary differential equations (the method of characteristics):

$$\frac{d \mathbf{p}}{d t} = q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \quad \text{Lorentz-Newton equation}$$
$$\frac{d \mathbf{r}}{d t} = \mathbf{v}$$

The characteristics curves corresponds to the trajectory of individual particles!

Hence, we can **probe Vlasov equation by solving for the motion of particles**, the larger number, the better!

The particle approach

The particle approach consists in approximating the distribution function by an ensemble of discrete particles in phase space

The Particle-In-Cell (PIC) approach

The Particle-In-Cell (PIC) approach

In the PIC approach, the particles do not feel the fields of all the other particles directly. **The particles feel each other through the grid**, via their contribution to the current and charge densities that is deposited on the grid.

Computation procedure per timestep in PIC

Computation procedure per timestep in PIC

Step 1: Particle push

$$\frac{d \mathbf{p}}{d t} = q \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right) \longrightarrow \frac{d \mathbf{u}}{d t} = \frac{q}{mc} \left(\mathbf{E} + \frac{\mathbf{u} \times \mathbf{B}}{\gamma} \right) \quad \text{where} \begin{cases} \gamma = \frac{1}{\sqrt{1 - (\mathbf{v}/c)^2}} \\ u = \frac{\gamma \mathbf{v}}{c} \end{cases} \text{ (4-velocity)} \\ \frac{d \mathbf{r}}{d t} = \frac{c \mathbf{u}}{\gamma} \end{cases}$$

Explicit **time-centered**, finite-difference scheme (leapfrog integration method):

- **u** and **r** are **staggered in time** by half a time step
- **Second order** accurate but requires only to evaluate function at one time step only (fast and no extra memory needed)
- **Stable** for oscillatory motion (gyromotion) as long as $\Delta t < \Delta t_{CFL}$ (see later)
- Time-reversal and **conserves well energy**
- Implicit methods also exist

Replacing \mathbf{u}^{+} and \mathbf{u}^{-} in Newton's equation gives:

$$u^+ = u^- + u^- \times s + (u^- \times w) \times s$$

Where
$$\mathbf{w} = \frac{q \mathbf{B}^n \Delta t}{2 m c \gamma^n}$$
 and $\mathbf{s} = \frac{2 \mathbf{w}}{1 + w^2}$

Interpolation of the fields

The fields are known on the mesh only => So we need to **interpolate** the fields to the **particle position**

<u>2D Example:</u> Bilinear interpolation ("area weighting", first order)

Consider field F known on the grid nodes F(i,j), and a particle located in P(x,y)

... But we can also imagine higher-order scheme. ¹⁸

Computation procedure per timestep in PIC

Step 2: Charge and current deposition In continuous space: $\rho \approx \sum_{k=1}^{N_p} q_k w_k \delta(\mathbf{r} - \mathbf{r}_k(t)) \qquad \mathbf{J} = \sum_{k=1}^{N_p} q_k w_k \mathbf{v}_k \delta(\mathbf{r} - \mathbf{r}_k(t))$ On the grid: $\rho_{i,j} \approx \sum_{k=1}^{N} q_k w_k S(\mathbf{r} - \mathbf{r}_k(t))$, where S is a "shape" function **<u>2D Example:</u>** Bilinear interpolation ("area weighting", first order) (i,j+1)(i+1,i+1)Then, the contributions of all particles to the current is: $\boldsymbol{J}_{i,j} = \sum_{k=1}^{N_{cell}} \boldsymbol{q}_k \boldsymbol{w}_k (1 - \boldsymbol{p}_k) (1 - \boldsymbol{q}_k) \boldsymbol{v}_k$ $\boldsymbol{J}_{i+1,j} = \sum_{k=1}^{N_{cell}} \boldsymbol{q}_k \boldsymbol{w}_k \boldsymbol{p}_k (1 - \boldsymbol{q}_k) \boldsymbol{v}_k$ \mathbf{S}_3 \mathbf{S}_4 $p_k = (x_k - x_i)/dx$ V $q_k = (y_k - y_i)/dy$ $\boldsymbol{J}_{i,j+1} = \sum_{k=1}^{N_{cell}} q_k \boldsymbol{w}_k (1-p_k) q_k \boldsymbol{v}_k$ \mathbf{S}_2 \mathbf{S}_{1} $\boldsymbol{J}_{i+1,j+1} = \sum_{k=1}^{N_{cell}} \boldsymbol{q}_k \boldsymbol{w}_k \boldsymbol{p}_k \boldsymbol{q}_k \boldsymbol{v}_k$ Х (i,j) (i+1,j)

Even though the particles are point-like, they have an **effective size** that is felt through the deposition of currents on the grid. In this case, their effective shape is triangular.

Computation procedure per timestep in PIC

Step 3: Maxwell equations

In Gaussian cgs units:

$$\nabla \cdot \boldsymbol{E} = 4 \pi \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$
$$\frac{\partial \boldsymbol{E}}{\partial t} = c \, \nabla \times \boldsymbol{B} - 4 \pi \, \boldsymbol{J} \qquad \frac{\partial \boldsymbol{B}}{\partial t} = -c \, \nabla \times \boldsymbol{E}$$

In principle, need to solve for the **time-dependent equations only**, then the other two should be **automatically satisfied**, but this is not necessarily true due to **truncation errors**.

The total particle charge is conserved, but not necessarily the charge deposited on the grid! $\nabla \cdot E \neq 4 \pi \rho$

$\nabla \cdot \boldsymbol{B} = 0$

Automatically satisfied to machine roundoff precision with the Yee Algorithm! [Yee 1966]

22

Yee algorithm

The fields are staggered in both space and in time!

Yee algorithm

Finite-Difference Time-Domain (FDTD) scheme: 2nd in space and time

Very **robust** and **stable** if the **Courant-Friedrichs-Lewy** (CFL) condition is fulfilled:

$$\mathbf{1D:} \left(\frac{c\,\Delta t}{\Delta x}\right)^2 < 1 \qquad \mathbf{2D:} \left(c\,\Delta t\right)^2 \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2}\right) < 1 \qquad \mathbf{3D:} \left(c\,\Delta t\right)^2 \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}\right) < 1$$

Physics: The Debye length and the plasma frequency must be resolved in PIC

$$\frac{\Delta x}{\Lambda_D} < 1 \qquad \qquad \omega_{pe} \Delta t < 1 \qquad \qquad 24$$

Non-Cartesian grid

Sometimes, it can be more interesting to use **non-cartesian** grid to take advantage of the symmetries of the system.

=> Simplifies the initial setup load balancing and boundary conditions

Applications to plasmas around a central object.

Examples: pulsar magnetospheres, accreting systems (see tomorrow's seminar) ²⁵ B. Cerutti

Emission of non-thermal radiation

The frequency of the energetic radiation is often not resolved by the grid! **Example:** Synchrotron radiation critical frequency: $\omega_{syn} \propto \gamma^2 (qB/mc) = \gamma^3 \omega_c \gg 1/\Delta t$

Hence, photons must be added as a separate species.

Also, the radiation reaction force must be added in the equation of motion explicitly:

The radiation reaction force is then given by the **Landau-Lifshitz formula** (classical electrodynamics):

$$\boldsymbol{g} \approx \frac{2}{3} r_e^2 \big[(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B}) \times \boldsymbol{B} + (\boldsymbol{\beta} \cdot \boldsymbol{E}) \boldsymbol{E} \big] - \frac{2}{3} r_e^2 \gamma^2 \big[(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B})^2 - (\boldsymbol{\beta} \cdot \boldsymbol{E})^2 \big] \boldsymbol{\beta}$$

For inverse Compton scattering (isotropic external source in the Thomson regime):

$$\boldsymbol{g} = -\frac{4}{3} \sigma_T \gamma^2 U_{rad} \boldsymbol{\beta}$$
 Applications to e.g., PWN, AGN jets
[See Cerutti+2013, 2016]

Pair creation, QED effects

The laser-plasma community is adding extra physics for the next generation of high-intensity laser that will reach a fraction of the critical field=> QED effects and pair creation important $E_{QED} = \frac{m_e^2 c^3}{e \hbar} \approx 4.4 \times 10^{13} G$

Regime relevant to **pulsars**, **magnetars** (B>B_{QED}), and **black hole** magnetospheres. PIC with pair creation start being used in astrophysics: *Timokhin 2010, Chen & Beloborodov 2014, Philippov + 2015a,b*.

Non-Euclidian metric

Application to e.g., **black hole** magnetospheres and **pulsars**.

The metric changes Maxwell equations, the effective size of the particles (current deposition), and the equation of motion.

Example: For a Schwarzschild metric

$$ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu} = -\alpha^{2} dt^{2} + dr^{2} / \alpha^{2} + r^{2} (d \theta^{2} + \sin^{2} \theta d \phi^{2})$$

Where $\alpha = \sqrt{1 - \frac{r_{g}}{r}}$ is the "lapse function"

Maxwell equation as seen in a local frame ("FIDO" observers): [Thorne+1986]

$$\frac{\partial \boldsymbol{E}}{\partial t} = c \, \nabla \times \boldsymbol{\boldsymbol{\Theta}} \boldsymbol{B} \big| -4 \, \pi \boldsymbol{\boldsymbol{\Theta}} \boldsymbol{J} \qquad \qquad \frac{\partial \, \boldsymbol{B}}{\partial t} = -c \, \nabla \times \boldsymbol{\boldsymbol{\Theta}} \boldsymbol{E} \big|$$

See PIC implementation in *EZeltron* by *Philippov* + 2015 for details.

A few words about hybrid PIC codes

An important limitation of full PIC methods is the **limited separation of scales.** Only microscopic systems can be modelled.

In particular, it's hard to model electron/ions plasmas with realistic mass ratio Plasma frequency $\omega_p \propto 1/\sqrt{m} \rightarrow \omega_{pe}/\omega_{pi} = \sqrt{m_i/m_e} \approx 43$

Hence, **ion acceleration is hard to capture with PIC** (except in the ultrarelativistic limit).

Hybrid code: [e.g., see Winske+2003]

Ions are PIC particles:

$$m_i \frac{d \mathbf{v}_i}{dt} = q \left(\mathbf{E} + \frac{\mathbf{v}_i \times \mathbf{B}}{c} \right)$$

Electrons are treated as a massless neutralizing **fluid** (method works for **non-relativistic plasmas**): $n_e m_e \frac{dV_e}{dt} = 0 = -e n_e q \left(E + \frac{V_e \times B}{C} \right) - \nabla \cdot P_e$

Example: Application to non-relativistic shock acceleration. [Gargaté & Spitkovsky 2011, Caprioli & Spitkovsky 2014]

29

Summary Part I

- PIC methods appropriate to model particle acceleration in **relativistic collisionless** outflows.
- Main algorithms for explicit PIC codes:
 - Evolving particles: Boris push
 - Evolving the fields: FDTD Yee method

• **PIC** is very **robust**, **scalable**, and **versatile** to various setup.

A few useful references:

- C.K. Birdsall, A.B Langdon, "Plasma Physics via Computer Simulation", Series in Plasma Physics
- R.W. Hockney, J.W. Eastwood, "Computer Simulation Using Particles"
- Philip L. Pritchett, "Particle-in-Cell Simulation of Plasmas A Tutorial", J. Büchner, C.T. Dum, M. Scholer (Eds.): LNP 615, pp. 1–24, 2003.
- J. Büchner, "Vlasov-code simulation", Advanced Methods for Space Simulations, edited by H. Usui and Y. Omura, pp. 23–46, 2007.
- **B.** Cerutti